rsync man page on OpenBSD

Man page or keyword search:  
man Server   11362 pages
apropos Keyword Search (all sections)
Output format
OpenBSD logo
[printable version]



rsync(1)						 rsync(1)

NAME
       rsync -- a fast, versatile, remote (and local) file-copying tool

SYNOPSIS
       Local:  rsync [OPTION...] SRC... [DEST]

       Access via remote shell:
	 Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
	 Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

       Access via rsync daemon:
	 Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
	       rsync [OPTION...] rsync://[USER@]HOST[:PORT]/SRC... [DEST]
	 Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
	       rsync [OPTION...] SRC... rsync://[USER@]HOST[:PORT]/DEST

       Usages with just one SRC arg and no DEST arg will list the source files
       instead of copying.

DESCRIPTION
       Rsync is a fast and extraordinarily versatile file  copying  tool.   It
       can  copy  locally,  to/from  another  host  over  any remote shell, or
       to/from a remote rsync daemon.  It offers a  large  number  of  options
       that  control  every  aspect  of	 its behavior and permit very flexible
       specification of the set of files to be copied.	It is famous  for  its
       delta-transfer  algorithm,  which  reduces the amount of data sent over
       the network by sending only the differences between  the	 source	 files
       and  the	 existing  files in the destination.  Rsync is widely used for
       backups and mirroring and as an improved copy command for everyday use.

       Rsync finds files that need to be transferred using a quick check algo-
       rithm (by default) that looks for files that have changed in size or in
       last-modified  time.  Any changes in the other preserved attributes (as
       requested by options) are made on the destination  file	directly  when
       the  quick  check  indicates  that  the	files data does not need to be
       updated.

       Some of the additional features of rsync are:

       o      support for copying links, devices, owners, groups, and  permis-
	      sions

       o      exclude and exclude-from options similar to GNU tar

       o      a	 CVS  exclude  mode for ignoring the same files that CVS would
	      ignore

       o      can use any transparent remote shell, including ssh or rsh

       o      does not require super-user privileges

			   31 Dec 2009				1

rsync(1)						 rsync(1)

       o      pipelining of file transfers to minimize latency costs

       o      support for anonymous or authenticated rsync daemons (ideal  for
	      mirroring)

GENERAL
       Rsync  copies  files either to or from a remote host, or locally on the
       current host (it does not support  copying  files  between  two	remote
       hosts).

       There  are  two	different  ways	 for rsync to contact a remote system:
       using a remote-shell program as the transport (such as ssh or  rsh)  or
       contacting  an  rsync daemon directly via TCP.  The remote-shell trans-
       port is used whenever the source or destination path contains a	single
       colon  (:)  separator  after a host specification.  Contacting an rsync
       daemon directly happens when the source or destination path contains  a
       double  colon  (::)  separator  after  a host specification, OR when an
       rsync:// URL is specified (see also the USING RSYNC-DAEMON FEATURES VIA
       A  REMOTE-SHELL	CONNECTION  section  for  an  exception to this latter
       rule).

       As a special case, if a single source arg is specified without a desti-
       nation, the files are listed in an output format similar to ls -l.

       As expected, if neither the source or destination path specify a remote
       host, the copy occurs locally (see also the --list-only option).

       Rsync refers to the local side as the client and the remote side as the
       server.	Dont confuse server with an rsync daemon -- a daemon is always
       a server, but a server can be either a daemon or a remote-shell spawned
       process.

SETUP
       See the file README for installation instructions.

       Once  installed,	 you  can use rsync to any machine that you can access
       via a remote shell (as well as some that you can access using the rsync
       daemon-mode  protocol).	 For remote transfers, a modern rsync uses ssh
       for its communications, but it may have been configured to use  a  dif-
       ferent remote shell by default, such as rsh or remsh.

       You  can also specify any remote shell you like, either by using the -e
       command line option, or by setting the RSYNC_RSH environment  variable.

       Note  that  rsync  must be installed on both the source and destination
       machines.

USAGE
       You use rsync in the same way you use rcp. You must  specify  a	source
       and a destination, one of which may be remote.

			   31 Dec 2009				2

rsync(1)						 rsync(1)

       Perhaps the best way to explain the syntax is with some examples:

	      rsync -t *.c foo:src/

       This would transfer all files matching the pattern *.c from the current
       directory to the directory src on the machine foo. If any of the	 files
       already	exist on the remote system then the rsync remote-update proto-
       col is used to update the file by sending only the differences. See the
       tech report for details.

	      rsync -avz foo:src/bar /data/tmp

       This would recursively transfer all files from the directory src/bar on
       the machine foo into the /data/tmp/bar directory on the local  machine.
       The  files are transferred in archive mode, which ensures that symbolic
       links, devices, attributes, permissions, ownerships, etc. are preserved
       in  the transfer.  Additionally, compression will be used to reduce the
       size of data portions of the transfer.

	      rsync -avz foo:src/bar/ /data/tmp

       A trailing slash on the source changes this behavior to avoid  creating
       an  additional  directory level at the destination.  You can think of a
       trailing / on a source as meaning copy the contents of  this  directory
       as  opposed  to	copy  the  directory  by  name,	 but in both cases the
       attributes of the containing directory are transferred to the  contain-
       ing  directory on the destination.  In other words, each of the follow-
       ing commands copies the files in the same way, including their  setting
       of the attributes of /dest/foo:

	      rsync -av /src/foo /dest
	      rsync -av /src/foo/ /dest/foo

       Note also that host and module references dont require a trailing slash
       to copy the contents of the default directory.  For  example,  both  of
       these copy the remote directorys contents into /dest:

	      rsync -av host: /dest
	      rsync -av host::module /dest

       You  can	 also  use rsync in local-only mode, where both the source and
       destination dont have a : in the name. In this case it behaves like  an
       improved copy command.

       Finally,	 you can list all the (listable) modules available from a par-
       ticular rsync daemon by leaving off the module name:

	      rsync somehost.mydomain.com::

			   31 Dec 2009				3

rsync(1)						 rsync(1)

       See the following section for more details.

ADVANCED USAGE
       The syntax for requesting multiple files from a remote host is done  by
       specifying  additional remote-host args in the same style as the first,
       or with the hostname omitted.  For instance, all these work:

	      rsync -av host:file1 :file2 host:file{3,4} /dest/
	      rsync -av host::modname/file{1,2} host::modname/file3 /dest/
	      rsync -av host::modname/file1 ::modname/file{3,4}

       Older versions of rsync required using quoted spaces in the  SRC,  like
       these examples:

	      rsync -av host:'dir1/file1 dir2/file2' /dest
	      rsync host::'modname/dir1/file1 modname/dir2/file2' /dest

       This  word-splitting  still works (by default) in the latest rsync, but
       is not as easy to use as the first method.

       If you need to transfer a filename that contains	 whitespace,  you  can
       either  specify the --protect-args (-s) option, or youll need to escape
       the whitespace in a way that the remote	shell  will  understand.   For
       instance:

	      rsync -av host:'file\ name\ with\ spaces' /dest

CONNECTING TO AN RSYNC DAEMON
       It  is  also possible to use rsync without a remote shell as the trans-
       port.  In this case you will directly connect to a remote rsync daemon,
       typically  using	 TCP port 873.	(This obviously requires the daemon to
       be running on the remote system, so refer to the STARTING AN RSYNC DAE-
       MON TO ACCEPT CONNECTIONS section below for information on that.)

       Using  rsync  in	 this  way is the same as using it with a remote shell
       except that:

       o      you either use a double colon :: instead of a  single  colon  to
	      separate the hostname from the path, or you use an rsync:// URL.

       o      the first word of the path is actually a module name.

       o      the remote daemon may print a message of the day when  you  con-
	      nect.

       o      if  you  specify no path name on the remote daemon then the list
	      of accessible paths on the daemon will be shown.

			   31 Dec 2009				4

rsync(1)						 rsync(1)

       o      if you specify no local destination then a listing of the speci-
	      fied files on the remote daemon is provided.

       o      you must not specify the --rsh (-e) option.

       An example that copies all the files in a remote module named src:

	   rsync -av host::src /dest

       Some  modules  on  the remote daemon may require authentication. If so,
       you will receive a password prompt when you connect. You can avoid  the
       password	 prompt	 by setting the environment variable RSYNC_PASSWORD to
       the password you want to use or using the --password-file option.  This
       may be useful when scripting rsync.

       WARNING:	 On  some  systems  environment	 variables  are visible to all
       users. On those systems using --password-file is recommended.

       You may establish the connection via a web proxy by setting  the	 envi-
       ronment	variable  RSYNC_PROXY to a hostname:port pair pointing to your
       web proxy.  Note that your web proxys configuration must support	 proxy
       connections to port 873.

       You  may	 also establish a daemon connection using a program as a proxy
       by setting the environment variable RSYNC_CONNECT_PROG to the  commands
       you  wish  to  run  in place of making a direct socket connection.  The
       string may contain the escape %H to represent the hostname specified in
       the  rsync  command  (so use %% if you need a single % in your string).
       For example:

	 export RSYNC_CONNECT_PROG='ssh proxyhost nc %H 873'
	 rsync -av targethost1::module/src/ /dest/
	 rsync -av rsync:://targethost2/module/src/ /dest/

       The command specified above uses ssh to run nc (netcat) on a proxyhost,
       which  forwards all data to port 873 (the rsync daemon) on the targeth-
       ost (%H).

USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL CONNECTION
       It is sometimes useful to use various features of an rsync daemon (such
       as  named modules) without actually allowing any new socket connections
       into a system (other than what is already  required  to	allow  remote-
       shell  access).	 Rsync	supports  connecting  to a host using a remote
       shell and then spawning a single-use daemon server that expects to read
       its config file in the home dir of the remote user.  This can be useful
       if you want to encrypt a daemon-style transfers	data,  but  since  the
       daemon  is  started up fresh by the remote user, you may not be able to
       use features such as chroot or change the uid used by the daemon.  (For
       another	way to encrypt a daemon transfer, consider using ssh to tunnel
       a local port to a remote machine and configure a normal rsync daemon on

			   31 Dec 2009				5

rsync(1)						 rsync(1)

       that remote host to only allow connections from localhost.)

       From  the  users perspective, a daemon transfer via a remote-shell con-
       nection uses nearly the same command-line syntax as a normal rsync-dae-
       mon  transfer,  with  the only exception being that you must explicitly
       set the remote shell program on the command-line with the --rsh=COMMAND
       option.	 (Setting  the	RSYNC_RSH  in the environment will not turn on
       this functionality.)  For example:

	   rsync -av --rsh=ssh host::module /dest

       If you need to specify a different remote-shell user, keep in mind that
       the  user@  prefix  in  front  of the host is specifying the rsync-user
       value (for a module that	 requires  user-based  authentication).	  This
       means  that you must give the -l user option to ssh when specifying the
       remote-shell, as in this example that uses the  short  version  of  the
       --rsh option:

	   rsync -av -e ssh -l ssh-user rsync-user@host::module /dest

       The ssh-user will be used at the ssh level; the rsync-user will be used
       to log-in to the module.

STARTING AN RSYNC DAEMON TO ACCEPT CONNECTIONS
       In order to connect to an rsync daemon, the remote system needs to have
       a daemon already running (or it needs to have configured something like
       inetd to spawn an rsync daemon for incoming connections on a particular
       port).	For  full  information on how to start a daemon that will han-
       dling incoming socket connections, see the rsyncd.conf(5) man  page  --
       that  is	 the  config  file  for	 the  daemon, and it contains the full
       details for how to run the daemon (including stand-alone and inetd con-
       figurations).

       If  youre  using	 one  of the remote-shell transports for the transfer,
       there is no need to manually start an rsync daemon.

EXAMPLES
       Here are some examples of how I use rsync.

       To backup my wifes home directory, which	 consists  of  large  MS  Word
       files and mail folders, I use a cron job that runs

	      rsync -Cavz . arvidsjaur:backup

       each night over a PPP connection to a duplicate directory on my machine
       arvidsjaur.

       To synchronize my samba source trees I use the following Makefile  tar-
       gets:

			   31 Dec 2009				6

rsync(1)						 rsync(1)

	   get:
		   rsync -avuzb --exclude '*~' samba:samba/ .
	   put:
		   rsync -Cavuzb . samba:samba/
	   sync: get put

       this  allows  me	 to  sync with a CVS directory at the other end of the
       connection. I then do CVS operations on the remote machine, which saves
       a lot of time as the remote CVS protocol isnt very efficient.

       I mirror a directory between my old and new ftp sites with the command:

       rsync -az -e ssh --delete ~ftp/pub/samba nimbus:~ftp/pub/tridge

       This is launched from cron every few hours.

OPTIONS SUMMARY
       Here is a short summary of the options available in rsync. Please refer
       to the detailed description below for a complete description.

	-v, --verbose		    increase verbosity
	-q, --quiet		    suppress non-error messages
	    --no-motd		    suppress daemon-mode MOTD (see caveat)
	-c, --checksum		    skip based on checksum, not mod-time & size
	-a, --archive		    archive mode; equals -rlptgoD (no -H,-A,-X)
	    --no-OPTION		    turn off an implied OPTION (e.g. --no-D)
	-r, --recursive		    recurse into directories
	-R, --relative		    use relative path names
	    --no-implied-dirs	    don't send implied dirs with --relative
	-b, --backup		    make backups (see --suffix & --backup-dir)
	    --backup-dir=DIR	    make backups into hierarchy based in DIR
	    --suffix=SUFFIX	    backup suffix (default ~ w/o --backup-dir)
	-u, --update		    skip files that are newer on the receiver
	    --inplace		    update destination files in-place
	    --append		    append data onto shorter files
	    --append-verify	    --append w/old data in file checksum
	-d, --dirs		    transfer directories without recursing
	-l, --links		    copy symlinks as symlinks
	-L, --copy-links	    transform symlink into referent file/dir
	    --copy-unsafe-links	    only unsafe symlinks are transformed
	    --safe-links	    ignore symlinks that point outside the tree
	-k, --copy-dirlinks	    transform symlink to dir into referent dir
	-K, --keep-dirlinks	    treat symlinked dir on receiver as dir
	-H, --hard-links	    preserve hard links
	-p, --perms		    preserve permissions
	-E, --executability	    preserve executability
	    --chmod=CHMOD	    affect file and/or directory permissions
	-A, --acls		    preserve ACLs (implies -p)
	-X, --xattrs		    preserve extended attributes
	-o, --owner		    preserve owner (super-user only)
	-g, --group		    preserve group
	    --devices		    preserve device files (super-user only)

			   31 Dec 2009				7

rsync(1)						 rsync(1)

	    --specials		    preserve special files
	-D			    same as --devices --specials
	-t, --times		    preserve modification times
	-O, --omit-dir-times	    omit directories from --times
	    --super		    receiver attempts super-user activities
	    --fake-super	    store/recover privileged attrs using xattrs
	-S, --sparse		    handle sparse files efficiently
	-n, --dry-run		    perform a trial run with no changes made
	-W, --whole-file	    copy files whole (w/o delta-xfer algorithm)
	-x, --one-file-system	    don't cross filesystem boundaries
	-B, --block-size=SIZE	    force a fixed checksum block-size
	-e, --rsh=COMMAND	    specify the remote shell to use
	    --rsync-path=PROGRAM    specify the rsync to run on remote machine
	    --existing		    skip creating new files on receiver
	    --ignore-existing	    skip updating files that exist on receiver
	    --remove-source-files   sender removes synchronized files (non-dir)
	    --del		    an alias for --delete-during
	    --delete		    delete extraneous files from dest dirs
	    --delete-before	    receiver deletes before transfer (default)
	    --delete-during	    receiver deletes during xfer, not before
	    --delete-delay	    find deletions during, delete after
	    --delete-after	    receiver deletes after transfer, not before
	    --delete-excluded	    also delete excluded files from dest dirs
	    --ignore-errors	    delete even if there are I/O errors
	    --force		    force deletion of dirs even if not empty
	    --max-delete=NUM	    don't delete more than NUM files
	    --max-size=SIZE	    don't transfer any file larger than SIZE
	    --min-size=SIZE	    don't transfer any file smaller than SIZE
	    --partial		    keep partially transferred files
	    --partial-dir=DIR	    put a partially transferred file into DIR
	    --delay-updates	    put all updated files into place at end
	-m, --prune-empty-dirs	    prune empty directory chains from file-list
	    --numeric-ids	    don't map uid/gid values by user/group name
	    --timeout=SECONDS	    set I/O timeout in seconds
	    --contimeout=SECONDS    set daemon connection timeout in seconds
	-I, --ignore-times	    don't skip files that match size and time
	    --size-only		    skip files that match in size
	    --modify-window=NUM	    compare mod-times with reduced accuracy
	-T, --temp-dir=DIR	    create temporary files in directory DIR
	-y, --fuzzy		    find similar file for basis if no dest file
	    --compare-dest=DIR	    also compare received files relative to DIR
	    --copy-dest=DIR	    ... and include copies of unchanged files
	    --link-dest=DIR	    hardlink to files in DIR when unchanged
	-z, --compress		    compress file data during the transfer
	    --compress-level=NUM    explicitly set compression level
	    --skip-compress=LIST    skip compressing files with suffix in LIST
	-C, --cvs-exclude	    auto-ignore files in the same way CVS does
	-f, --filter=RULE	    add a file-filtering RULE
	-F			    same as --filter='dir-merge /.rsync-filter'
				    repeated: --filter='- .rsync-filter'
	    --exclude=PATTERN	    exclude files matching PATTERN
	    --exclude-from=FILE	    read exclude patterns from FILE
	    --include=PATTERN	    don't exclude files matching PATTERN
	    --include-from=FILE	    read include patterns from FILE

			   31 Dec 2009				8

rsync(1)						 rsync(1)

	    --files-from=FILE	    read list of source-file names from FILE
	-0, --from0		    all *from/filter files are delimited by 0s
	-s, --protect-args	    no space-splitting; wildcard chars only
	    --address=ADDRESS	    bind address for outgoing socket to daemon
	    --port=PORT		    specify double-colon alternate port number
	    --sockopts=OPTIONS	    specify custom TCP options
	    --blocking-io	    use blocking I/O for the remote shell
	    --stats		    give some file-transfer stats
	-8, --8-bit-output	    leave high-bit chars unescaped in output
	-h, --human-readable	    output numbers in a human-readable format
	    --progress		    show progress during transfer
	-P			    same as --partial --progress
	-i, --itemize-changes	    output a change-summary for all updates
	    --out-format=FORMAT	    output updates using the specified FORMAT
	    --log-file=FILE	    log what we're doing to the specified FILE
	    --log-file-format=FMT   log updates using the specified FMT
	    --password-file=FILE    read daemon-access password from FILE
	    --list-only		    list the files instead of copying them
	    --bwlimit=KBPS	    limit I/O bandwidth; KBytes per second
	    --write-batch=FILE	    write a batched update to FILE
	    --only-write-batch=FILE like --write-batch but w/o updating dest
	    --read-batch=FILE	    read a batched update from FILE
	    --protocol=NUM	    force an older protocol version to be used
	    --iconv=CONVERT_SPEC    request charset conversion of filenames
	    --checksum-seed=NUM	    set block/file checksum seed (advanced)
	-4, --ipv4		    prefer IPv4
	-6, --ipv6		    prefer IPv6
	    --version		    print version number
       (-h) --help		    show this help (see below for -h comment)

       Rsync  can also be run as a daemon, in which case the following options
       are accepted:

	    --daemon		    run as an rsync daemon
	    --address=ADDRESS	    bind to the specified address
	    --bwlimit=KBPS	    limit I/O bandwidth; KBytes per second
	    --config=FILE	    specify alternate rsyncd.conf file
	    --no-detach		    do not detach from the parent
	    --port=PORT		    listen on alternate port number
	    --log-file=FILE	    override the log file setting
	    --log-file-format=FMT   override the log format setting
	    --sockopts=OPTIONS	    specify custom TCP options
	-v, --verbose		    increase verbosity
	-4, --ipv4		    prefer IPv4
	-6, --ipv6		    prefer IPv6
	-h, --help		    show this help (if used after --daemon)

OPTIONS
       rsync uses the GNU long options	package.  Many	of  the	 command  line
       options	have  two  variants,  one short and one long.  These are shown
       below, separated by commas. Some options only have a long variant.  The

			   31 Dec 2009				9

rsync(1)						 rsync(1)

       = for options that take a parameter is optional; whitespace can be used
       instead.

       --help Print a short help page  describing  the	options	 available  in
	      rsync  and exit.	For backward-compatibility with older versions
	      of rsync, the help will also be output if you use the -h	option
	      without any other args.

       --version
	      print the rsync version number and exit.

       -v, --verbose
	      This  option  increases  the amount of information you are given
	      during the transfer.  By default, rsync works silently. A single
	      -v  will	give you information about what files are being trans-
	      ferred and a brief summary at the end. Two -v options will  give
	      you  information	on  what  files are being skipped and slightly
	      more information at the end. More than  two  -v  options	should
	      only be used if you are debugging rsync.

	      Note that the names of the transferred files that are output are
	      done using a default --out-format of %n%L, which tells you  just
	      the  name	 of  the  file	and,  if  the item is a link, where it
	      points.  At the single -v level of verbosity, this does not men-
	      tion when a file gets its attributes changed.  If you ask for an
	      itemized list of changed attributes (either --itemize-changes or
	      adding  %i  to  the  --out-format	 setting),  the output (on the
	      client) increases to mention all items that are changed  in  any
	      way.  See the --out-format option for more details.

       -q, --quiet
	      This  option  decreases  the amount of information you are given
	      during the transfer, notably  suppressing	 information  messages
	      from  the	 remote	 server.  This	option is useful when invoking
	      rsync from cron.

       --no-motd
	      This option affects the information that is output by the client
	      at the start of a daemon transfer.  This suppresses the message-
	      of-the-day (MOTD) text, but it also affects the list of  modules
	      that  the	 daemon	 sends in response to the rsync host:: request
	      (due to a limitation in the rsync protocol), so omit this option
	      if you want to request the list of modules from the daemon.

       -I, --ignore-times
	      Normally	rsync  will  skip  any files that are already the same
	      size and have the	 same  modification  timestamp.	  This	option
	      turns  off  this	quick  check behavior, causing all files to be

			   31 Dec 2009			       10

rsync(1)						 rsync(1)

	      updated.

       --size-only
	      This modifies rsyncs quick check	algorithm  for	finding	 files
	      that  need  to  be  transferred, changing it from the default of
	      transferring files with either a changed size or a changed last-
	      modified	time  to  just	looking for files that have changed in
	      size.  This is useful when starting to  use  rsync  after	 using
	      another  mirroring  system  which	 may  not  preserve timestamps
	      exactly.

       --modify-window
	      When comparing two timestamps, rsync treats  the	timestamps  as
	      being  equal  if	they  differ by no more than the modify-window
	      value.  This is normally 0 (for an exact	match),	 but  you  may
	      find it useful to set this to a larger value in some situations.
	      In particular, when transferring to or from an  MS  Windows  FAT
	      filesystem  (which represents times with a 2-second resolution),
	      --modify-window=1 is useful (allowing times to differ by up to 1
	      second).

       -c, --checksum
	      This changes the way rsync checks if the files have been changed
	      and are in need of a transfer.  Without this option, rsync  uses
	      a	 quick	check  that (by default) checks if each files size and
	      time of last modification match between the sender and receiver.
	      This  option changes this to compare a 128-bit checksum for each
	      file that has a matching size.  Generating the  checksums	 means
	      that  both  sides	 will expend a lot of disk I/O reading all the
	      data in the files in the transfer (and  this  is	prior  to  any
	      reading  that  will  be done to transfer changed files), so this
	      can slow things down significantly.

	      The sending side generates its checksums while it is  doing  the
	      file-system  scan	 that  builds the list of the available files.
	      The receiver generates its checksums when	 it  is	 scanning  for
	      changed files, and will checksum any file that has the same size
	      as the corresponding senders file:  files with either a  changed
	      size or a changed checksum are selected for transfer.

	      Note  that  rsync always verifies that each transferred file was
	      correctly reconstructed on the  receiving	 side  by  checking  a
	      whole-file  checksum  that  is  generated	 as the file is trans-
	      ferred, but that automatic after-the-transfer  verification  has
	      nothing  to  do  with this options before-the-transfer Does this
	      file need to be updated? check.

	      For protocol 30 and  beyond  (first  supported  in  3.0.0),  the
	      checksum used is MD5.  For older protocols, the checksum used is
	      MD4.

			   31 Dec 2009			       11

rsync(1)						 rsync(1)

       -a, --archive
	      This is equivalent to -rlptgoD. It is a quick way of saying  you
	      want  recursion  and want to preserve almost everything (with -H
	      being a notable omission).  The  only  exception	to  the	 above
	      equivalence  is when --files-from is specified, in which case -r
	      is not implied.

	      Note that -a does not preserve hardlinks, because finding multi-
	      ply-linked  files is expensive.  You must separately specify -H.

       --no-OPTION
	      You may turn off one or more implied options  by	prefixing  the
	      option  name  with  no-.	Not all options may be prefixed with a
	      no-: only options	 that  are  implied  by	 other	options	 (e.g.
	      --no-D,  --no-perms)  or have different defaults in various cir-
	      cumstances (e.g. --no-whole-file, --no-blocking-io,  --no-dirs).
	      You  may	specify either the short or the long option name after
	      the no- prefix (e.g. --no-R is the same as --no-relative).

	      For example: if you want to use -a (--archive) but dont want  -o
	      (--owner),  instead  of  converting  -a  into -rlptgD, you could
	      specify -a --no-o (or -a --no-owner).

	      The order of the options is important:  if  you  specify	--no-r
	      -a,  the -r option would end up being turned on, the opposite of
	      -a --no-r.  Note also that the side-effects of the  --files-from
	      option  are  NOT	positional, as it affects the default state of
	      several options and slightly changes the meaning of -a (see  the
	      --files-from option for more details).

       -r, --recursive
	      This  tells  rsync  to  copy  directories recursively.  See also
	      --dirs (-d).

	      Beginning with rsync 3.0.0, the recursive algorithm used is  now
	      an  incremental  scan that uses much less memory than before and
	      begins the transfer after the scanning of the first few directo-
	      ries  have  been	completed.  This incremental scan only affects
	      our recursion algorithm, and does	 not  change  a	 non-recursive
	      transfer.	 It is also only possible when both ends of the trans-
	      fer are at least version 3.0.0.

	      Some options require rsync to know the full file list, so	 these
	      options  disable the incremental recursion mode.	These include:
	      --delete-before,	 --delete-after,    --prune-empty-dirs,	   and
	      --delay-updates.	 Because of this, the default delete mode when
	      you specify --delete is now --delete-during when	both  ends  of
	      the  connection are at least 3.0.0 (use --del or --delete-during
	      to request this improved deletion mode  explicitly).   See  also
	      the  --delete-delay  option  that	 is a better choice than using
	      --delete-after.

			   31 Dec 2009			       12

rsync(1)						 rsync(1)

	      Incremental recursion can be disabled using the  --no-inc-recur-
	      sive option or its shorter --no-i-r alias.

       -R, --relative
	      Use  relative  paths. This means that the full path names speci-
	      fied on the command line are sent to the server rather than just
	      the  last	 parts	of  the filenames. This is particularly useful
	      when you want to send several different directories at the  same
	      time. For example, if you used this command:

		 rsync -av /foo/bar/baz.c remote:/tmp/

	      ...  this would create a file named baz.c in /tmp/ on the remote
	      machine. If instead you used

		 rsync -avR /foo/bar/baz.c remote:/tmp/

	      then a file named /tmp/foo/bar/baz.c would  be  created  on  the
	      remote machine, preserving its full path.	 These extra path ele-
	      ments are called implied	directories  (i.e.  the	 foo  and  the
	      foo/bar directories in the above example).

	      Beginning	 with  rsync  3.0.0,  rsync always sends these implied
	      directories as real directories in the file list, even if a path
	      element  is really a symlink on the sending side.	 This prevents
	      some really unexpected behaviors when copying the full path of a
	      file  that  you didnt realize had a symlink in its path.	If you
	      want to duplicate a server-side symlink, include both  the  sym-
	      link via its path, and referent directory via its real path.  If
	      youre dealing with an older rsync on the sending side,  you  may
	      need to use the --no-implied-dirs option.

	      It is also possible to limit the amount of path information that
	      is sent as implied directories for each path you specify.	  With
	      a	 modern	 rsync on the sending side (beginning with 2.6.7), you
	      can insert a dot and a slash into the source path, like this:

		 rsync -avR /foo/./bar/baz.c remote:/tmp/

	      That would create /tmp/bar/baz.c on the remote  machine.	 (Note
	      that the dot must be followed by a slash, so /foo/. would not be
	      abbreviated.)  For older rsync versions, you would need to use a
	      chdir  to	 limit	the  source  path.   For example, when pushing
	      files:

		 (cd /foo; rsync -avR bar/baz.c remote:/tmp/)

	      (Note that the parens put the two commands into a sub-shell,  so
	      that   the  cd  command  doesnt  remain  in  effect  for	future

			   31 Dec 2009			       13

rsync(1)						 rsync(1)

	      commands.)  If youre pulling files from an older rsync, use this
	      idiom (but only for a non-daemon transfer):

		 rsync -avR --rsync-path=cd /foo; rsync \
		     remote:bar/baz.c /tmp/

       --no-implied-dirs
	      This  option  affects  the  default  behavior  of the --relative
	      option.  When it is specified, the  attributes  of  the  implied
	      directories from the source names are not included in the trans-
	      fer.  This means that the corresponding  path  elements  on  the
	      destination  system  are	left  unchanged if they exist, and any
	      missing implied directories are created with default attributes.
	      This even allows these implied path elements to have big differ-
	      ences, such as being a symlink to a directory on	the  receiving
	      side.

	      For  instance,  if a command-line arg or a files-from entry told
	      rsync to transfer the file path/foo/file, the  directories  path
	      and  path/foo  are implied when --relative is used.  If path/foo
	      is a symlink to bar on the  destination  system,	the  receiving
	      rsync  would ordinarily delete path/foo, recreate it as a direc-
	      tory, and	 receive  the  file  into  the	new  directory.	  With
	      --no-implied-dirs,  the  receiving  rsync	 updates path/foo/file
	      using the existing path elements, which means that the file ends
	      up  being	 created  in path/bar.	Another way to accomplish this
	      link preservation is to use the  --keep-dirlinks	option	(which
	      will  also  affect  symlinks  to	directories in the rest of the
	      transfer).

	      When pulling files from an rsync older than 3.0.0, you may  need
	      to use this option if the sending side has a symlink in the path
	      you request and you wish the implied directories	to  be	trans-
	      ferred as normal directories.

       -b, --backup
	      With  this  option, preexisting destination files are renamed as
	      each file is transferred or deleted.  You can control where  the
	      backup  file  goes  and what (if any) suffix gets appended using
	      the --backup-dir and --suffix options.

	      Note  that  if  you   dont   specify   --backup-dir,   (1)   the
	      --omit-dir-times	option will be implied, and (2) if --delete is
	      also in effect (without --delete-excluded),  rsync  will	add  a
	      protect filter-rule for the backup suffix to the end of all your
	      existing excludes (e.g. -f P *~).	 This will prevent  previously
	      backed-up	 files	from being deleted.  Note that if you are sup-
	      plying your own filter rules, you may need  to  manually	insert
	      your own exclude/protect rule somewhere higher up in the list so
	      that it has a high enough priority to  be	 effective  (e.g.,  if
	      your  rules  specify  a  trailing	 inclusion/exclusion of *, the

			   31 Dec 2009			       14

rsync(1)						 rsync(1)

	      auto-added rule would never be reached).

       --backup-dir=DIR
	      In combination with the --backup option,	this  tells  rsync  to
	      store  all  backups  in the specified directory on the receiving
	      side.  This can be used for incremental backups.	You can	 addi-
	      tionally specify a backup suffix using the --suffix option (oth-
	      erwise the files backed up in the specified directory will  keep
	      their original filenames).

       --suffix=SUFFIX
	      This  option  allows  you	 to override the default backup suffix
	      used with the --backup (-b) option. The default suffix is a ~ if
	      no  --backup-dir was specified, otherwise it is an empty string.

       -u, --update
	      This forces rsync to skip any files which exist on the  destina-
	      tion  and	 have  a  modified  time that is newer than the source
	      file.  (If an existing destination file has a modification  time
	      equal  to	 the source files, it will be updated if the sizes are
	      different.)

	      Note that this does not affect the copying of symlinks or	 other
	      special  files.	Also,  a difference of file format between the
	      sender and receiver is always considered to be important	enough
	      for  an update, no matter what date is on the objects.  In other
	      words, if the source has a directory where the destination has a
	      file, the transfer would occur regardless of the timestamps.

	      This  option  is	a  transfer rule, not an exclude, so it doesnt
	      affect the data that goes	 into  the  file-lists,	 and  thus  it
	      doesnt  affect  deletions.   It  just  limits the files that the
	      receiver requests to be transferred.

       --inplace
	      This option changes how rsync transfers a	 file  when  its  data
	      needs to be updated: instead of the default method of creating a
	      new copy of the file and moving it into place when  it  is  com-
	      plete,  rsync  instead  writes  the updated data directly to the
	      destination file.

	      This has several effects: (1) in-use binaries cannot be  updated
	      (either  the  OS	will  prevent this from happening, or binaries
	      that attempt to swap-in their data will misbehave or crash), (2)
	      the  files  data	will  be  in  an inconsistent state during the
	      transfer, (3) a files data may be left in an inconsistent	 state
	      after  the  transfer  if	the  transfer  is interrupted or if an
	      update fails, (4) a file that does not  have  write  permissions
	      can  not	be  updated,  and  (5) the efficiency of rsyncs delta-
	      transfer	algorithm  may	be  reduced  if	 some  data   in   the

			   31 Dec 2009			       15

rsync(1)						 rsync(1)

	      destination  file	 is  overwritten  before it can be copied to a
	      position later in the file (one exception to this is if you com-
	      bine  this  option with --backup, since rsync is smart enough to
	      use the backup file as the basis file for the transfer).

	      WARNING: you should not use this option to update files that are
	      being  accessed  by  others,  so be careful when choosing to use
	      this for a copy.

	      This option is useful for transferring large files  with	block-
	      based  changes  or  appended  data, and also on systems that are
	      disk bound, not network bound.

	      The option implies --partial (since an interrupted transfer does
	      not  delete  the	file),	but  conflicts	with --partial-dir and
	      --delay-updates.	Prior to rsync 2.6.4 --inplace was also incom-
	      patible with --compare-dest and --link-dest.

       --append
	      This  causes  rsync  to update a file by appending data onto the
	      end of the file, which  presumes	that  the  data	 that  already
	      exists  on the receiving side is identical with the start of the
	      file on the sending side.	 If a file needs to be transferred and
	      its  size on the receiver is the same or longer than the size on
	      the sender, the file is skipped.	This does not  interfere  with
	      the  updating  of	 a  files non-content attributes (e.g. permis-
	      sions, ownership, etc.) when the file does not need to be trans-
	      ferred,  nor  does  it  affect  the  updating of any non-regular
	      files.  Implies --inplace, but does not conflict	with  --sparse
	      (since it is always extending a files length).

       --append-verify
	      This  works just like the --append option, but the existing data
	      on the receiving side is included in the full-file checksum ver-
	      ification	 step,	which  will  cause  a file to be resent if the
	      final verification step fails (rsync uses a normal,  non-append-
	      ing --inplace transfer for the resend).

	      Note:  prior  to	rsync  3.0.0,  the --append option worked like
	      --append-verify, so if you are interacting with an  older	 rsync
	      (or  the	transfer  is using a protocol prior to 30), specifying
	      either append option will initiate an --append-verify  transfer.

       -d, --dirs
	      Tell  the	 sending  side	to  include  any  directories that are
	      encountered.  Unlike --recursive, a directorys contents are  not
	      copied  unless  the directory name specified is . or ends with a
	      trailing slash (e.g. ., dir/., dir/, etc.).  Without this option
	      or  the  --recursive  option, rsync will skip all directories it
	      encounters (and output a message to that effect for  each	 one).
	      If  you  specify	both --dirs and --recursive, --recursive takes

			   31 Dec 2009			       16

rsync(1)						 rsync(1)

	      precedence.

	      The --dirs option is implied by the --files-from option  or  the
	      --list-only  option  (including an implied --list-only usage) if
	      --recursive wasnt specified (so that directories are seen in the
	      listing).	  Specify  --no-dirs  (or  --no-d) if you want to turn
	      this off.

	      There is also a backward-compatibility helper option, --old-dirs
	      (or --old-d) that tells rsync to use a hack of -r --exclude=/*/*
	      to get an older rsync to list a single directory without recurs-
	      ing.

       -l, --links
	      When  symlinks are encountered, recreate the symlink on the des-
	      tination.

       -L, --copy-links
	      When symlinks are encountered, the item that they point to  (the
	      referent) is copied, rather than the symlink.  In older versions
	      of rsync, this option also had the side-effect  of  telling  the
	      receiving	 side to follow symlinks, such as symlinks to directo-
	      ries.  In a modern rsync such as this one, youll need to specify
	      --keep-dirlinks  (-K)  to	 get  this  extra  behavior.  The only
	      exception is when sending files to an rsync that is too  old  to
	      understand -K -- in that case, the -L option will still have the
	      side-effect of -K on that older receiving rsync.

       --copy-unsafe-links
	      This tells rsync to copy the referent  of	 symbolic  links  that
	      point  outside  the  copied  tree.   Absolute  symlinks are also
	      treated like ordinary files, and so  are	any  symlinks  in  the
	      source  path itself when --relative is used.  This option has no
	      additional effect if --copy-links was also specified.

       --safe-links
	      This tells rsync to ignore any symbolic links which  point  out-
	      side  the	 copied	 tree. All absolute symlinks are also ignored.
	      Using this option in conjunction with --relative may give	 unex-
	      pected results.

       -k, --copy-dirlinks
	      This  option  causes  the	 sending  side to treat a symlink to a
	      directory as though it were a real directory.  This is useful if
	      you  dont	 want  symlinks	 to non-directories to be affected, as
	      they would be using --copy-links.

	      Without this option, if the sending side has replaced  a	direc-
	      tory  with  a  symlink  to  a directory, the receiving side will

			   31 Dec 2009			       17

rsync(1)						 rsync(1)

	      delete anything that is in the way of the new symlink, including
	      a	 directory  hierarchy  (as  long  as --force or --delete is in
	      effect).

	      See also --keep-dirlinks for an analogous option for the receiv-
	      ing side.

       -K, --keep-dirlinks
	      This  option  causes  the receiving side to treat a symlink to a
	      directory as though it were a real directory,  but  only	if  it
	      matches  a real directory from the sender.  Without this option,
	      the receivers symlink would be deleted and replaced with a  real
	      directory.

	      For  example, suppose you transfer a directory foo that contains
	      a file file, but foo is  a  symlink  to  directory  bar  on  the
	      receiver.	 Without --keep-dirlinks, the receiver deletes symlink
	      foo, recreates it as a directory, and receives the file into the
	      new  directory.	With  --keep-dirlinks,	the receiver keeps the
	      symlink and file ends up in bar.

	      One note of caution:  if you use --keep-dirlinks, you must trust
	      all  the	symlinks  in  the  copy!   If  it  is  possible for an
	      untrusted user to create their own symlink to any directory, the
	      user  could then (on a subsequent copy) replace the symlink with
	      a real directory and affect the content  of  whatever  directory
	      the  symlink  references.	 For backup copies, you are better off
	      using something like a bind mount instead of a symlink to modify
	      your receiving hierarchy.

	      See also --copy-dirlinks for an analogous option for the sending
	      side.

       -H, --hard-links
	      This tells rsync to look for hard-linked files in	 the  transfer
	      and link together the corresponding files on the receiving side.
	      Without this option,  hard-linked	 files	in  the	 transfer  are
	      treated as though they were separate files.

	      When  you are updating a non-empty destination, this option only
	      ensures that files that are hard-linked together on  the	source
	      are  hard-linked	together on the destination.  It does NOT cur-
	      rently endeavor to break already existing hard links on the des-
	      tination that do not exist between the source files.  Note, how-
	      ever, that if  one  or  more  extra-linked  files	 have  content
	      changes,	they  will  become unlinked when updated (assuming you
	      are not using the --inplace option).

	      Note that rsync can only detect hard links  between  files  that
	      are  inside  the transfer set.  If rsync updates a file that has
	      extra hard-link connections to files outside the transfer,  that
	      linkage will be broken.  If you are tempted to use the --inplace

			   31 Dec 2009			       18

rsync(1)						 rsync(1)

	      option to avoid this breakage, be very careful that you know how
	      your  files  are	being  updated so that you are certain that no
	      unintended changes happen due to lingering hard links  (and  see
	      the --inplace option for more caveats).

	      If  incremental recursion is active (see --recursive), rsync may
	      transfer a missing hard-linked file before it finds that another
	      link  for that contents exists elsewhere in the hierarchy.  This
	      does not affect the accuracy of the  transfer,  just  its	 effi-
	      ciency.	One way to avoid this is to disable incremental recur-
	      sion using the --no-inc-recursive option.

       -p, --perms
	      This option causes the receiving rsync to	 set  the  destination
	      permissions to be the same as the source permissions.  (See also
	      the --chmod option for a way to modify what rsync	 considers  to
	      be the source permissions.)

	      When this option is off, permissions are set as follows:

	      o	     Existing  files  (including  updated  files) retain their
		     existing permissions, though the  --executability	option
		     might change just the execute permission for the file.

	      o	     New  files	 get  their  normal permission bits set to the
		     source files permissions masked with the receiving direc-
		     torys  default permissions (either the receiving processs
		     umask, or the permissions specified via  the  destination
		     directorys	 default  ACL),	 and  their special permission
		     bits disabled except in the case where  a	new  directory
		     inherits a setgid bit from its parent directory.

	      Thus, when --perms and --executability are both disabled, rsyncs
	      behavior is the same as that of other file-copy utilities,  such
	      as cp(1) and tar(1).

	      In  summary:  to	give  destination files (both old and new) the
	      source permissions, use --perms.	To give new files the destina-
	      tion-default   permissions   (while   leaving   existing	 files
	      unchanged), make sure that the --perms option  is	 off  and  use
	      --chmod=ugo=rwX  (which  ensures	that  all  non-masked bits get
	      enabled).	 If youd care to make this latter behavior  easier  to
	      type, you could define a popt alias for it, such as putting this
	      line in the file ~/.popt (the following defines the  -Z  option,
	      and  includes --no-g to use the default group of the destination
	      dir):

		 rsync alias -Z --no-p --no-g --chmod=ugo=rwX

	      You could then use this new option in a  command	such  as  this

			   31 Dec 2009			       19

rsync(1)						 rsync(1)

	      one:

		 rsync -avZ src/ dest/

	      (Caveat:	make  sure  that -a does not follow -Z, or it will re-
	      enable the two --no-* options mentioned above.)

	      The preservation of the destinations setgid bit on newly-created
	      directories when --perms is off was added in rsync 2.6.7.	 Older
	      rsync versions erroneously preserved the three  special  permis-
	      sion  bits  for  newly-created files when --perms was off, while
	      overriding the destinations setgid bit setting on	 a  newly-cre-
	      ated  directory.	 Default  ACL  observance was added to the ACL
	      patch for rsync 2.6.7, so older (or non-ACL-enabled) rsyncs  use
	      the  umask even if default ACLs are present.  (Keep in mind that
	      it is the version of the	receiving  rsync  that	affects	 these
	      behaviors.)

       -E, --executability
	      This  option causes rsync to preserve the executability (or non-
	      executability) of regular files when --perms is not enabled.   A
	      regular file is considered to be executable if at least one x is
	      turned on in its	permissions.   When  an	 existing  destination
	      files  executability  differs  from  that	 of  the corresponding
	      source file, rsync modifies the destination files permissions as
	      follows:

	      o	     To	 make a file non-executable, rsync turns off all its x
		     permissions.

	      o	     To make a file executable, rsync turns on each x  permis-
		     sion that has a corresponding r permission enabled.

	      If --perms is enabled, this option is ignored.

       -A, --acls
	      This  option  causes  rsync to update the destination ACLs to be
	      the same as the source ACLs.  The option also implies --perms.

	      The source and destination  systems  must	 have  compatible  ACL
	      entries  for this option to work properly.  See the --fake-super
	      option for a way to backup and restore ACLs that are not compat-
	      ible.

       -X, --xattrs
	      This   option   causes  rsync  to	 update	 the  remote  extended
	      attributes to be the same as the local ones.

			   31 Dec 2009			       20

rsync(1)						 rsync(1)

	      For systems that support extended-attribute namespaces,  a  copy
	      being  done  by  a  super-user copies all namespaces except sys-
	      tem.*.  A normal user only copies the user.* namespace.	To  be
	      able to backup and restore non-user namespaces as a normal user,
	      see the --fake-super option.

       --chmod
	      This option tells rsync to apply	one  or	 more  comma-separated
	      chmod  strings  to  the permission of the files in the transfer.
	      The resulting value is treated as though it were the permissions
	      that  the	 sending  side supplied for the file, which means that
	      this option can seem to have no  effect  on  existing  files  if
	      --perms is not enabled.

	      In  addition  to	the  normal  parsing  rules  specified	in the
	      chmod(1) manpage, you can specify an item that should only apply
	      to a directory by prefixing it with a D, or specify an item that
	      should only apply to a file by prefixing it with a F.  For exam-
	      ple:

	      --chmod=Dg+s,ug+w,Fo-w,+X

	      It  is  also  legal to specify multiple --chmod options, as each
	      additional option is just appended to the	 list  of  changes  to
	      make.

	      See  the --perms and --executability options for how the result-
	      ing permission value can be applied to the files in  the	trans-
	      fer.

       -o, --owner
	      This  option  causes  rsync  to set the owner of the destination
	      file to be the same as the source file, but only if the  receiv-
	      ing  rsync  is being run as the super-user (see also the --super
	      and --fake-super options).  Without this option,	the  owner  of
	      new and/or transferred files are set to the invoking user on the
	      receiving side.

	      The preservation of ownership will associate matching  names  by
	      default,	but  may fall back to using the ID number in some cir-
	      cumstances (see also the --numeric-ids option for a full discus-
	      sion).

       -g, --group
	      This  option  causes  rsync  to set the group of the destination
	      file to be the same as the source file.  If the  receiving  pro-
	      gram  is	not  running  as  the super-user (or if --no-super was
	      specified), only groups that the invoking user on the  receiving
	      side is a member of will be preserved.  Without this option, the
	      group is set to the default group of the invoking	 user  on  the

			   31 Dec 2009			       21

rsync(1)						 rsync(1)

	      receiving side.

	      The  preservation	 of  group information will associate matching
	      names by default, but may fall back to using the	ID  number  in
	      some circumstances (see also the --numeric-ids option for a full
	      discussion).

       --devices
	      This option causes rsync to transfer character and block	device
	      files  to	 the  remote  system  to recreate these devices.  This
	      option has no effect if the receiving rsync is not  run  as  the
	      super-user (see also the --super and --fake-super options).

       --specials
	      This option causes rsync to transfer special files such as named
	      sockets and fifos.

       -D     The -D option is equivalent to --devices --specials.

       -t, --times
	      This tells rsync to transfer modification times along  with  the
	      files  and  update them on the remote system.  Note that if this
	      option is not used, the optimization that	 excludes  files  that
	      have  not	 been  modified cannot be effective; in other words, a
	      missing -t or -a will cause the next transfer to behave as if it
	      used  -I,	 causing all files to be updated (though rsyncs delta-
	      transfer algorithm will make the update fairly efficient if  the
	      files  havent actually changed, youre much better off using -t).

       -O, --omit-dir-times
	      This tells rsync to omit directories when it is preserving modi-
	      fication times (see --times).  If NFS is sharing the directories
	      on the receiving side, it is a good idea to use -O.  This option
	      is inferred if you use --backup without --backup-dir.

       --super
	      This  tells  the receiving side to attempt super-user activities
	      even if the receiving rsync wasnt run by the super-user.	 These
	      activities  include:  preserving	users  via the --owner option,
	      preserving all groups (not just the current  users  groups)  via
	      the  --groups  option,  and  copying  devices  via the --devices
	      option.  This is useful for systems that allow  such  activities
	      without  being  the  super-user,	and also for ensuring that you
	      will get errors if the receiving side  isnt  being  run  as  the
	      super-user.   To	turn off super-user activities, the super-user
	      can use --no-super.

			   31 Dec 2009			       22

rsync(1)						 rsync(1)

       --fake-super
	      When this option is enabled, rsync simulates super-user  activi-
	      ties  by	saving/restoring the privileged attributes via special
	      extended attributes that are attached to each file (as  needed).
	      This  includes  the  files  owner	 and  group  (if it is not the
	      default), the files device info (device & special files are cre-
	      ated  as empty text files), and any permission bits that we wont
	      allow to be set on the real file (e.g.  the real	file  gets  u-
	      s,g-s,o-t	 for  safety)  or  that	 would limit the owners access
	      (since the real super-user can always access/change a file,  the
	      files  we	 create can always be accessed/changed by the creating
	      user).  This option also handles ACLs (if --acls was  specified)
	      and non-user extended attributes (if --xattrs was specified).

	      This  is	a  good way to backup data without using a super-user,
	      and to store ACLs from incompatible systems.

	      The --fake-super option only affects the side where  the	option
	      is  used.	  To  affect the remote side of a remote-shell connec-
	      tion, specify an rsync path:

		rsync -av --rsync-path=rsync --fake-super /src/ host:/dest/

	      Since there is only one  side  in	 a  local  copy,  this	option
	      affects  both the sending and receiving of files.	 Youll need to
	      specify a copy using localhost if you need to avoid this, possi-
	      bly using the lsh shell script (from the support directory) as a
	      substitute for an actual remote shell (see --rsh).

	      This option is overridden by both --super and --no-super.

	      See also the fake super setting in the daemons rsyncd.conf file.

       -S, --sparse
	      Try  to  handle  sparse  files  efficiently so they take up less
	      space on the destination.	 Conflicts with --inplace because  its
	      not possible to overwrite data in a sparse fashion.

	      NOTE:  Dont  use	this  option when the destination is a Solaris
	      tmpfs filesystem. It seems to have problems  seeking  over  null
	      regions, and ends up corrupting the files.

       -n, --dry-run
	      This  makes  rsync  perform  a  trial  run  that doesnt make any
	      changes (and produces mostly the same output as a real run).  It
	      is  most	commonly  used	in  combination with the -v, --verbose
	      and/or -i, --itemize-changes options to see what an  rsync  com-
	      mand is going to do before one actually runs it.

	      The  output  of  --itemize-changes is supposed to be exactly the
	      same on a dry run and a subsequent real run (barring intentional

			   31 Dec 2009			       23

rsync(1)						 rsync(1)

	      trickery	and  system  call  failures); if it isnt, thats a bug.
	      Other output should be mostly unchanged, but may differ in  some
	      areas.   Notably,	 a  dry	 run does not send the actual data for
	      file transfers, so --progress has no  effect,  the  bytes	 sent,
	      bytes  received,	literal	 data, and matched data statistics are
	      too small, and the speedup value is equivalent to a run where no
	      file transfers were needed.

       -W, --whole-file
	      With this option rsyncs delta-transfer algorithm is not used and
	      the whole file is sent  as-is  instead.	The  transfer  may  be
	      faster  if  this	option	is used when the bandwidth between the
	      source and destination machines is higher than the bandwidth  to
	      disk  (especially when the disk is actually a networked filesys-
	      tem).  This is the default when both the source and  destination
	      are  specified  as  local	 paths,	 but  only if no batch-writing
	      option is in effect.

       -x, --one-file-system
	      This tells rsync to avoid crossing a  filesystem	boundary  when
	      recursing.   This	 does  not  limit the users ability to specify
	      items to copy from multiple filesystems, just  rsyncs  recursion
	      through the hierarchy of each directory that the user specified,
	      and also the analogous recursion on the  receiving  side	during
	      deletion.	  Also	keep in mind that rsync treats a bind mount to
	      the same device as being on the same filesystem.

	      If this option is repeated, rsync omits all mount-point directo-
	      ries  from  the copy.  Otherwise, it includes an empty directory
	      at each mount-point it encounters (using the attributes  of  the
	      mounted  directory  because  those of the underlying mount-point
	      directory are inaccessible).

	      If rsync has been told to collapse symlinks (via --copy-links or
	      --copy-unsafe-links), a symlink to a directory on another device
	      is treated like a mount-point.  Symlinks to non-directories  are
	      unaffected by this option.

       --existing, --ignore-non-existing
	      This  tells rsync to skip creating files (including directories)
	      that do not exist yet on the destination.	  If  this  option  is
	      combined	with  the  --ignore-existing  option, no files will be
	      updated (which can be useful if all you want  to	do  is	delete
	      extraneous files).

	      This  option  is	a  transfer rule, not an exclude, so it doesnt
	      affect the data that goes	 into  the  file-lists,	 and  thus  it
	      doesnt  affect  deletions.   It  just  limits the files that the
	      receiver requests to be transferred.

			   31 Dec 2009			       24

rsync(1)						 rsync(1)

       --ignore-existing
	      This tells rsync to skip updating files that  already  exist  on
	      the  destination	(this does not ignore existing directories, or
	      nothing would get done).	See also --existing.

	      This option is a transfer rule, not an  exclude,	so  it	doesnt
	      affect  the  data	 that  goes  into  the file-lists, and thus it
	      doesnt affect deletions.	It just	 limits	 the  files  that  the
	      receiver requests to be transferred.

	      This  option  can	 be  useful  for those doing backups using the
	      --link-dest option when they need to continue a backup run  that
	      got  interrupted.	  Since a --link-dest run is copied into a new
	      directory hierarchy (when it is used properly),  using  --ignore
	      existing	will  ensure  that  the already-handled files dont get
	      tweaked (which avoids a change in permissions on the hard-linked
	      files).	This does mean that this option is only looking at the
	      existing files in the destination hierarchy itself.

       --remove-source-files
	      This tells rsync to remove  from	the  sending  side  the	 files
	      (meaning	non-directories)  that	are a part of the transfer and
	      have been successfully duplicated on the receiving side.

       --delete
	      This tells rsync to delete extraneous files from	the  receiving
	      side  (ones  that	 arent	on the sending side), but only for the
	      directories that are being synchronized.	You  must  have	 asked
	      rsync  to	 send  the  whole directory (e.g. dir or dir/) without
	      using a wildcard for the directorys contents (e.g. dir/*)	 since
	      the  wildcard  is	 expanded  by  the shell and rsync thus gets a
	      request to transfer  individual  files,  not  the	 files	parent
	      directory.   Files  that are excluded from the transfer are also
	      excluded from being deleted unless you use the --delete-excluded
	      option  or  mark	the rules as only matching on the sending side
	      (see the include/exclude modifiers in the FILTER RULES section).

	      Prior  to	 rsync	2.6.7, this option would have no effect unless
	      --recursive was enabled.	Beginning with 2.6.7,  deletions  will
	      also occur when --dirs (-d) is enabled, but only for directories
	      whose contents are being copied.

	      This option can be dangerous if used incorrectly!	 It is a  very
	      good  idea to first try a run using the --dry-run option (-n) to
	      see what files are going to be deleted.

	      If the sending side detects any I/O errors, then the deletion of
	      any  files  at  the  destination will be automatically disabled.
	      This is to prevent temporary filesystem failures	(such  as  NFS
	      errors)  on  the sending side from causing a massive deletion of
	      files on the  destination.   You	can  override  this  with  the
	      --ignore-errors option.

			   31 Dec 2009			       25

rsync(1)						 rsync(1)

	      The   --delete   option	may   be  combined  with  one  of  the
	      --delete-WHEN   options	without	  conflict,   as    well    as
	      --delete-excluded.    However,  if  none	of  the	 --delete-WHEN
	      options are specified, rsync  will  choose  the  --delete-during
	      algorithm	 when  talking	to  rsync  3.0.0  or  newer,  and  the
	      --delete-before algorithm when talking to an older  rsync.   See
	      also --delete-delay and --delete-after.

       --delete-before
	      Request  that  the  file-deletions on the receiving side be done
	      before the transfer starts.  See --delete (which is implied) for
	      more details on file-deletion.

	      Deleting	before	the  transfer  is helpful if the filesystem is
	      tight for space and removing extraneous files would help to make
	      the  transfer  possible.	 However,  it  does  introduce a delay
	      before the start of the transfer, and this delay might cause the
	      transfer	to  timeout  (if  --timeout  was  specified).  It also
	      forces rsync to use the old, non-incremental recursion algorithm
	      that  requires  rsync to scan all the files in the transfer into
	      memory at once (see --recursive).

       --delete-during, --del
	      Request that the file-deletions on the receiving	side  be  done
	      incrementally as the transfer happens.  The per-directory delete
	      scan is done right before each directory is checked for updates,
	      so  it  behaves like a more efficient --delete-before, including
	      doing the deletions prior	 to  any  per-directory	 filter	 files
	      being  updated.	This  option  was first added in rsync version
	      2.6.4.  See --delete (which is  implied)	for  more  details  on
	      file-deletion.

       --delete-delay
	      Request  that  the  file-deletions on the receiving side be com-
	      puted during  the	 transfer  (like  --delete-during),  and  then
	      removed  after the transfer completes.  This is useful when com-
	      bined with --delay-updates and/or --fuzzy, and is more efficient
	      than  using  --delete-after  (but	 can behave differently, since
	      --delete-after computes the deletions in a separate  pass	 after
	      all updates are done).  If the number of removed files overflows
	      an internal buffer, a temporary file  will  be  created  on  the
	      receiving	 side  to hold the names (it is removed while open, so
	      you shouldnt see it during the transfer).	 If  the  creation  of
	      the  temporary  file fails, rsync will try to fall back to using
	      --delete-after (which it cannot do if --recursive	 is  doing  an
	      incremental  scan).   See	 --delete  (which is implied) for more
	      details on file-deletion.

       --delete-after
	      Request that the file-deletions on the receiving	side  be  done

			   31 Dec 2009			       26

rsync(1)						 rsync(1)

	      after  the  transfer  has	 completed.  This is useful if you are
	      sending new per-directory merge files as a part of the  transfer
	      and  you	want  their  exclusions	 to take effect for the delete
	      phase of the current transfer.  It also forces rsync to use  the
	      old,  non-incremental recursion algorithm that requires rsync to
	      scan all the files in the transfer  into	memory	at  once  (see
	      --recursive).   See --delete (which is implied) for more details
	      on file-deletion.

       --delete-excluded
	      In addition to deleting the files on the receiving side that are
	      not  on  the  sending  side, this tells rsync to also delete any
	      files on the receiving side that are excluded  (see  --exclude).
	      See the FILTER RULES section for a way to make individual exclu-
	      sions behave this way on the receiver, and for a way to  protect
	      files  from  --delete-excluded.  See --delete (which is implied)
	      for more details on file-deletion.

       --ignore-errors
	      Tells --delete to go ahead and delete files even when there  are
	      I/O errors.

       --force
	      This  option tells rsync to delete a non-empty directory when it
	      is to be replaced by a non-directory.  This is only relevant  if
	      deletions are not active (see --delete for details).

	      Note for older rsync versions: --force used to still be required
	      when using --delete-after, and  it  used	to  be	non-functional
	      unless the --recursive option was also enabled.

       --max-delete=NUM
	      This  tells  rsync not to delete more than NUM files or directo-
	      ries.  If that limit is exceeded, a warning is output and	 rsync
	      exits with an error code of 25 (new for 3.0.0).

	      Also new for version 3.0.0, you may specify --max-delete=0 to be
	      warned about any extraneous files	 in  the  destination  without
	      removing	any of them.  Older clients interpreted this as unlim-
	      ited, so if you dont know what version the client	 is,  you  can
	      use  the	less  obvious --max-delete=-1 as a backward-compatible
	      way to specify that no deletions be allowed (though  older  ver-
	      sions didnt warn when the limit was exceeded).

       --max-size=SIZE
	      This  tells  rsync to avoid transferring any file that is larger
	      than the specified SIZE. The SIZE value can be suffixed  with  a
	      string  to  indicate  a size multiplier, and may be a fractional
	      value (e.g. --max-size=1.5m).

			   31 Dec 2009			       27

rsync(1)						 rsync(1)

	      This option is a transfer rule, not an  exclude,	so  it	doesnt
	      affect  the  data	 that  goes  into  the file-lists, and thus it
	      doesnt affect deletions.	It just	 limits	 the  files  that  the
	      receiver requests to be transferred.

	      The  suffixes are as follows: K (or KiB) is a kibibyte (1024), M
	      (or MiB) is a mebibyte (1024*1024), and G (or GiB) is a gibibyte
	      (1024*1024*1024).	 If you want the multiplier to be 1000 instead
	      of 1024, use KB, MB, or GB.  (Note: lower-case is also  accepted
	      for  all	values.)   Finally, if the suffix ends in either +1 or
	      -1, the value will be offset by one byte in the indicated direc-
	      tion.

	      Examples:	   --max-size=1.5mb-1	 is    1499999	  bytes,   and
	      --max-size=2g+1 is 2147483649 bytes.

       --min-size=SIZE
	      This tells rsync to avoid transferring any file that is  smaller
	      than  the	 specified  SIZE,  which  can help in not transferring
	      small, junk files.  See the --max-size option for a  description
	      of SIZE and other information.

       -B, --block-size=BLOCKSIZE
	      This  forces  the block size used in rsyncs delta-transfer algo-
	      rithm to a fixed value.  It is normally selected	based  on  the
	      size  of	each file being updated.  See the technical report for
	      details.

       -e, --rsh=COMMAND
	      This option allows you to choose	an  alternative	 remote	 shell
	      program  to  use	for communication between the local and remote
	      copies of rsync. Typically, rsync is configured to  use  ssh  by
	      default, but you may prefer to use rsh on a local network.

	      If  this	option is used with [user@]host::module/path, then the
	      remote shell COMMAND will be used to run an rsync daemon on  the
	      remote  host,  and  all  data  will  be transmitted through that
	      remote shell connection, rather than  through  a	direct	socket
	      connection  to  a	 running rsync daemon on the remote host.  See
	      the section USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL  CON-
	      NECTION above.

	      Command-line  arguments  are  permitted in COMMAND provided that
	      COMMAND is presented to rsync as a single	 argument.   You  must
	      use  spaces  (not tabs or other whitespace) to separate the com-
	      mand and args from each other, and you can  use  single-	and/or
	      double-quotes  to	 preserve spaces in an argument (but not back-
	      slashes).	 Note that doubling a single-quote  inside  a  single-
	      quoted  string  gives  you  a single-quote; likewise for double-
	      quotes (though you need to pay attention to  which  quotes  your
	      shell  is	 parsing  and  which  quotes  rsync is parsing).  Some

			   31 Dec 2009			       28

rsync(1)						 rsync(1)

	      examples:

		  -e 'ssh -p 2234'
		  -e 'ssh -o ProxyCommand nohup ssh firewall nc -w1 %h %p'

	      (Note that ssh users  can	 alternately  customize	 site-specific
	      connect options in their .ssh/config file.)

	      You can also choose the remote shell program using the RSYNC_RSH
	      environment variable, which accepts the same range of values  as
	      -e.

	      See  also	 the  --blocking-io  option  which is affected by this
	      option.

       --rsync-path=PROGRAM
	      Use this to specify what program is to  be  run  on  the	remote
	      machine  to start-up rsync.  Often used when rsync is not in the
	      default		remote-shells		 path		 (e.g.
	      --rsync-path=/usr/local/bin/rsync).   Note  that	PROGRAM is run
	      with the help of a shell, so it can be any program,  script,  or
	      command  sequence	 youd care to run, so long as it does not cor-
	      rupt the standard-in & standard-out that rsync is using to  com-
	      municate.

	      One  tricky  example  is to set a different default directory on
	      the remote machine for use  with	the  --relative	 option.   For
	      instance:

		  rsync -avR --rsync-path=cd /a/b && rsync host:c/d /e/

       -C, --cvs-exclude
	      This  is a useful shorthand for excluding a broad range of files
	      that you often dont want to transfer between systems. It uses  a
	      similar  algorithm  to  CVS  to  determine  if  a file should be
	      ignored.

	      The exclude list is initialized to exclude the  following	 items
	      (these  initial items are marked as perishable -- see the FILTER
	      RULES section):

		     RCS  SCCS	CVS  CVS.adm   RCSLOG	cvslog.*   tags	  TAGS
		     .make.state  .nse_depinfo *~ #* .#* ,* _$* *$ *.old *.bak
		     *.BAK *.orig *.rej .del-* *.a *.olb *.o *.obj *.so	 *.exe
		     *.Z *.elc *.ln core .svn/ .git/ .bzr/

	      then,  files  listed in a $HOME/.cvsignore are added to the list
	      and any files listed in the CVSIGNORE environment variable  (all
	      cvsignore names are delimited by whitespace).

			   31 Dec 2009			       29

rsync(1)						 rsync(1)

	      Finally, any file is ignored if it is in the same directory as a
	      .cvsignore file and matches one of the patterns listed  therein.
	      Unlike  rsyncs filter/exclude files, these patterns are split on
	      whitespace.  See the cvs(1) manual for more information.

	      If youre combining -C with your own --filter rules,  you	should
	      note that these CVS excludes are appended at the end of your own
	      rules, regardless of where the -C was  placed  on	 the  command-
	      line.  This makes them a lower priority than any rules you spec-
	      ified explicitly.	 If  you  want	to  control  where  these  CVS
	      excludes	get  inserted  into your filter rules, you should omit
	      the -C as a command-line option and use a combination of	--fil-
	      ter=:C  and  --filter=-C	(either	 on  your  command-line	 or by
	      putting the :C and -C rules into a filter file with  your	 other
	      rules).	The  first  option turns on the per-directory scanning
	      for the .cvsignore file.	The  second  option  does  a  one-time
	      import of the CVS excludes mentioned above.

       -f, --filter=RULE
	      This  option allows you to add rules to selectively exclude cer-
	      tain files from the list of files to  be	transferred.  This  is
	      most useful in combination with a recursive transfer.

	      You  may use as many --filter options on the command line as you
	      like to build up the list of files to exclude.   If  the	filter
	      contains whitespace, be sure to quote it so that the shell gives
	      the rule to rsync as a single argument.	The  text  below  also
	      mentions	that  you  can	use an underscore to replace the space
	      that separates a rule from its arg.

	      See the FILTER RULES section for detailed	 information  on  this
	      option.

       -F     The  -F  option  is a shorthand for adding two --filter rules to
	      your command.  The first time it is used is a shorthand for this
	      rule:

		 --filter='dir-merge /.rsync-filter'

	      This  tells  rsync to look for per-directory .rsync-filter files
	      that have been sprinkled through the  hierarchy  and  use	 their
	      rules  to	 filter the files in the transfer.  If -F is repeated,
	      it is a shorthand for this rule:

		 --filter='exclude .rsync-filter'

	      This filters out the .rsync-filter  files	 themselves  from  the
	      transfer.

	      See  the	FILTER	RULES  section for detailed information on how

			   31 Dec 2009			       30

rsync(1)						 rsync(1)

	      these options work.

       --exclude=PATTERN
	      This option is a simplified form of  the	--filter  option  that
	      defaults	to  an	exclude rule and does not allow the full rule-
	      parsing syntax of normal filter rules.

	      See the FILTER RULES section for detailed	 information  on  this
	      option.

       --exclude-from=FILE
	      This option is related to the --exclude option, but it specifies
	      a FILE that contains exclude patterns  (one  per	line).	 Blank
	      lines  in	 the  file and lines starting with ; or # are ignored.
	      If FILE is -, the list will be read from standard input.

       --include=PATTERN
	      This option is a simplified form of  the	--filter  option  that
	      defaults	to  an	include rule and does not allow the full rule-
	      parsing syntax of normal filter rules.

	      See the FILTER RULES section for detailed	 information  on  this
	      option.

       --include-from=FILE
	      This option is related to the --include option, but it specifies
	      a FILE that contains include patterns  (one  per	line).	 Blank
	      lines  in	 the  file and lines starting with ; or # are ignored.
	      If FILE is -, the list will be read from standard input.

       --files-from=FILE
	      Using this option allows you to specify the exact list of	 files
	      to  transfer  (as read from the specified FILE or - for standard
	      input).  It also tweaks the default behavior of  rsync  to  make
	      transferring just the specified files and directories easier:

	      o	     The  --relative  (-R)  option is implied, which preserves
		     the path information that is specified for each  item  in
		     the file (use --no-relative or --no-R if you want to turn
		     that off).

	      o	     The --dirs (-d) option  is	 implied,  which  will	create
		     directories  specified  in	 the  list  on the destination
		     rather than  noisily  skipping  them  (use	 --no-dirs  or
		     --no-d if you want to turn that off).

	      o	     The  --archive  (-a)  options  behavior  does  not	 imply
		     --recursive (-r), so specify it explicitly, if  you  want

			   31 Dec 2009			       31

rsync(1)						 rsync(1)

		     it.

	      o	     These  side-effects change the default state of rsync, so
		     the position of the --files-from option on	 the  command-
		     line has no bearing on how other options are parsed (e.g.
		     -a works the same before or after --files-from,  as  does
		     --no-R and all other options).

	      The  filenames  that  are read from the FILE are all relative to
	      the source dir -- any leading slashes are removed and no .. ref-
	      erences are allowed to go higher than the source dir.  For exam-
	      ple, take this command:

		 rsync -a --files-from=/tmp/foo /usr remote:/backup

	      If /tmp/foo contains the string bin (or even /bin), the /usr/bin
	      directory will be created as /backup/bin on the remote host.  If
	      it contains bin/ (note the trailing slash), the  immediate  con-
	      tents of the directory would also be sent (without needing to be
	      explicitly mentioned in  the  file  --  this  began  in  version
	      2.6.4).	In both cases, if the -r option was enabled, that dirs
	      entire hierarchy would also be transferred (keep in mind that -r
	      needs  to be specified explicitly with --files-from, since it is
	      not implied by -a).  Also note that the effect of	 the  (enabled
	      by default) --relative option is to duplicate only the path info
	      that is read from the file -- it does not force the  duplication
	      of the source-spec path (/usr in this case).

	      In  addition,  the --files-from file can be read from the remote
	      host instead of the local host if you specify a host:  in	 front
	      of the file (the host must match one end of the transfer).  As a
	      short-cut, you can specify just a prefix of : to	mean  use  the
	      remote end of the transfer.  For example:

		 rsync -a --files-from=:/path/file-list src:/ /tmp/copy

	      This  would  copy all the files specified in the /path/file-list
	      file that was located on the remote src host.

	      If the --iconv and --protect-args options are specified and  the
	      --files-from  filenames are being sent from one host to another,
	      the filenames will be translated from the sending hosts  charset
	      to the receiving hosts charset.

       -0, --from0
	      This  tells  rsync that the rules/filenames it reads from a file
	      are terminated by a null (\0) character, not a NL, CR, or CR+LF.
	      This  affects  --exclude-from, --include-from, --files-from, and
	      any merged files specified in a  --filter	 rule.	 It  does  not
	      affect  --cvs-exclude  (since  all  names read from a .cvsignore

			   31 Dec 2009			       32

rsync(1)						 rsync(1)

	      file are split on whitespace).

       -s, --protect-args
	      This option sends all filenames and most options to  the	remote
	      rsync without allowing the remote shell to interpret them.  This
	      means that spaces are not split in names, and  any  non-wildcard
	      special  characters  are	not  translated	 (such	as ~, $, ;, &,
	      etc.).  Wildcards are expanded  on  the  remote  host  by	 rsync
	      (instead of the shell doing it).

	      If  you  use  this  option with --iconv, the args related to the
	      remote side will also be translated from the local to the remote
	      character-set.   The  translation	 happens before wild-cards are
	      expanded.	 See also the --files-from option.

       -T, --temp-dir=DIR
	      This option instructs rsync to use DIR as	 a  scratch  directory
	      when  creating  temporary copies of the files transferred on the
	      receiving side.  The default behavior is to create  each	tempo-
	      rary  file  in  the same directory as the associated destination
	      file.

	      This option is most often used when the receiving disk partition
	      does  not	 have  enough free space to hold a copy of the largest
	      file in the transfer.  In	 this  case  (i.e.  when  the  scratch
	      directory	 is  on a different disk partition), rsync will not be
	      able to rename each received temporary file over the top of  the
	      associated  destination  file,  but  instead  must  copy it into
	      place.  Rsync does this by copying the file over the top of  the
	      destination  file,  which	 means	that the destination file will
	      contain truncated data during this copy.	If this were not  done
	      this  way	 (even if the destination file were first removed, the
	      data locally copied to  a	 temporary  file  in  the  destination
	      directory, and then renamed into place) it would be possible for
	      the old file to continue taking up disk space (if someone had it
	      open),  and  thus	 there might not be enough room to fit the new
	      version on the disk at the same time.

	      If you are using this option for reasons other than  a  shortage
	      of   disk	  space,   you	 may  wish  to	combine	 it  with  the
	      --delay-updates option, which will ensure that all copied	 files
	      get put into subdirectories in the destination hierarchy, await-
	      ing the end of the transfer.  If you dont have  enough  room  to
	      duplicate	 all  the arriving files on the destination partition,
	      another way to tell rsync that you arent overly concerned	 about
	      disk  space  is  to use the --partial-dir option with a relative
	      path; because this tells rsync that it is OK to stash off a copy
	      of a single file in a subdir in the destination hierarchy, rsync
	      will use the partial-dir as a staging area  to  bring  over  the
	      copied file, and then rename it into place from there. (Specify-
	      ing a --partial-dir with an absolute path	 does  not  have  this
	      side-effect.)

			   31 Dec 2009			       33

rsync(1)						 rsync(1)

       -y, --fuzzy
	      This option tells rsync that it should look for a basis file for
	      any destination file that is  missing.   The  current  algorithm
	      looks in the same directory as the destination file for either a
	      file that has an identical size and modified-time,  or  a	 simi-
	      larly-named  file.  If found, rsync uses the fuzzy basis file to
	      try to speed up the transfer.

	      Note that the use of the --delete option might get  rid  of  any
	      potential	 fuzzy-match  files,  so  either use --delete-after or
	      specify some filename exclusions if you need to prevent this.

       --compare-dest=DIR
	      This option instructs  rsync  to	use  DIR  on  the  destination
	      machine  as an additional hierarchy to compare destination files
	      against doing transfers (if the files are missing in the	desti-
	      nation  directory).  If a file is found in DIR that is identical
	      to the senders file, the file will NOT  be  transferred  to  the
	      destination  directory.	This  is  useful for creating a sparse
	      backup of just files that have changed from an earlier backup.

	      Beginning in version 2.6.4, multiple --compare-dest  directories
	      may  be  provided,  which will cause rsync to search the list in
	      the order specified for an exact match.  If  a  match  is	 found
	      that  differs  only  in attributes, a local copy is made and the
	      attributes updated.  If a match is not found, a basis file  from
	      one  of  the DIRs will be selected to try to speed up the trans-
	      fer.

	      If DIR is a relative path, it is	relative  to  the  destination
	      directory.  See also --copy-dest and --link-dest.

       --copy-dest=DIR
	      This  option  behaves  like  --compare-dest, but rsync will also
	      copy unchanged files found in DIR to the	destination  directory
	      using a local copy.  This is useful for doing transfers to a new
	      destination while leaving existing files intact, and then	 doing
	      a	 flash-cutover	when  all  files have been successfully trans-
	      ferred.

	      Multiple --copy-dest directories may  be	provided,  which  will
	      cause  rsync  to	search	the list in the order specified for an
	      unchanged file.  If a match is not found, a basis file from  one
	      of the DIRs will be selected to try to speed up the transfer.

	      If  DIR  is  a  relative path, it is relative to the destination
	      directory.  See also --compare-dest and --link-dest.

       --link-dest=DIR
	      This option behaves like --copy-dest, but	 unchanged  files  are
	      hard  linked  from  DIR to the destination directory.  The files

			   31 Dec 2009			       34

rsync(1)						 rsync(1)

	      must be identical in all preserved attributes (e.g. permissions,
	      possibly	ownership)  in	order  for  the	 files	to  be	linked
	      together.	 An example:

		rsync -av --link-dest=$PWD/prior_dir host:src_dir/ new_dir/

	      If files arent linking,  double-check  their  attributes.	  Also
	      check  if	 some  attributes are getting forced outside of rsyncs
	      control, such a mount option that	 squishes  root	 to  a	single
	      user,  or	 mounts a removable drive with generic ownership (such
	      as OS Xs Ignore ownership on this volume option).

	      Beginning in version 2.6.4, multiple --link-dest directories may
	      be  provided,  which  will cause rsync to search the list in the
	      order specified for an exact match.  If a match  is  found  that
	      differs  only  in	 attributes,  a	 local	copy  is  made and the
	      attributes updated.  If a match is not found, a basis file  from
	      one  of  the DIRs will be selected to try to speed up the trans-
	      fer.

	      This option works best when copying into	an  empty  destination
	      hierarchy,  as  rsync treats existing files as definitive (so it
	      never looks in  the  link-dest  dirs  when  a  destination  file
	      already  exists),	 and  as  malleable  (so  it  might change the
	      attributes of a destination file, which affects  all  the	 hard-
	      linked versions).

	      Note  that if you combine this option with --ignore-times, rsync
	      will not link any files together because it only links identical
	      files  together as a substitute for transferring the file, never
	      as an additional check after the file is updated.

	      If DIR is a relative path, it is	relative  to  the  destination
	      directory.  See also --compare-dest and --copy-dest.

	      Note  that  rsync	 versions  prior to 2.6.1 had a bug that could
	      prevent --link-dest from working properly for  a	non-super-user
	      when  -o	was specified (or implied by -a).  You can work-around
	      this bug by avoiding the -o option when sending to an old rsync.

       -z, --compress
	      With  this  option, rsync compresses the file data as it is sent
	      to the destination machine, which reduces	 the  amount  of  data
	      being  transmitted  -- something that is useful over a slow con-
	      nection.

	      Note that this  option  typically	 achieves  better  compression
	      ratios  than can be achieved by using a compressing remote shell
	      or a compressing transport because it  takes  advantage  of  the
	      implicit	information  in	 the matching data blocks that are not
	      explicitly sent over the connection.

			   31 Dec 2009			       35

rsync(1)						 rsync(1)

	      See the --skip-compress option for the default list of file suf-
	      fixes that will not be compressed.

       --compress-level=NUM
	      Explicitly  set  the  compression	 level to use (see --compress)
	      instead of letting it default.  If NUM is non-zero,  the	--com-
	      press option is implied.

       --skip-compress=LIST
	      Override	the list of file suffixes that will not be compressed.
	      The LIST should be one or more file suffixes (without  the  dot)
	      separated by slashes (/).

	      You  may specify an empty string to indicate that no file should
	      be skipped.

	      Simple character-class matching is supported: each must  consist
	      of a list of letters inside the square brackets (e.g. no special
	      classes, such as [:alpha:], are supported).

	      The characters asterisk (*) and question-mark (?) have  no  spe-
	      cial meaning.

	      Heres  an	 example that specifies 6 suffixes to skip (since 1 of
	      the 5 rules matches 2 suffixes):

		  --skip-compress=gz/jpg/mp[34]/7z/bz2

	      The default list of suffixes that will not be compressed is this
	      (several of these are newly added for 3.0.0):

		  gz/zip/z/rpm/deb/iso/bz2/t[gb]z/7z/mp[34]/mov/avi/ogg/jpg/jpeg

	      This  list  will be replaced by your --skip-compress list in all
	      but one situation: a copy from a	daemon	rsync  will  add  your
	      skipped  suffixes	 to its list of non-compressing files (and its
	      list may be configured to a different default).

       --numeric-ids
	      With this option rsync will transfer numeric group and user  IDs
	      rather  than using user and group names and mapping them at both
	      ends.

	      By default rsync will use the username and groupname  to	deter-
	      mine  what  ownership  to	 give files. The special uid 0 and the
	      special group 0 are never mapped via user/group  names  even  if
	      the --numeric-ids option is not specified.

	      If a user or group has no name on the source system or it has no

			   31 Dec 2009			       36

rsync(1)						 rsync(1)

	      match on the destination system, then the numeric	 ID  from  the
	      source system is used instead.  See also the comments on the use
	      chroot setting in the rsyncd.conf manpage for information on how
	      the  chroot  setting affects rsyncs ability to look up the names
	      of the users and groups and what you can do about it.

       --timeout=TIMEOUT
	      This option allows you to set a maximum I/O timeout in  seconds.
	      If no data is transferred for the specified time then rsync will
	      exit. The default is 0, which means no timeout.

       --contimeout
	      This option allows you to set the amount of time that rsync will
	      wait  for	 its connection to an rsync daemon to succeed.	If the
	      timeout is reached, rsync exits with an error.

       --address
	      By default rsync will bind to the wildcard address when connect-
	      ing  to  an  rsync  daemon.   The --address option allows you to
	      specify a specific IP address (or hostname)  to  bind  to.   See
	      also this option in the --daemon mode section.

       --port=PORT
	      This  specifies  an alternate TCP port number to use rather than
	      the default of 873.  This is only needed if you  are  using  the
	      double-colon  (::) syntax to connect with an rsync daemon (since
	      the URL syntax has a way to specify the port as a	 part  of  the
	      URL).  See also this option in the --daemon mode section.

       --sockopts
	      This  option can provide endless fun for people who like to tune
	      their systems to the utmost degree. You can  set	all  sorts  of
	      socket  options  which  may  make transfers faster (or slower!).
	      Read the man page for the setsockopt() system call  for  details
	      on  some	of  the	 options you may be able to set. By default no
	      special socket options are set. This only affects direct	socket
	      connections  to  a remote rsync daemon.  This option also exists
	      in the --daemon mode section.

       --blocking-io
	      This tells rsync to use blocking I/O  when  launching  a	remote
	      shell  transport.	  If  the remote shell is either rsh or remsh,
	      rsync defaults to using blocking I/O, otherwise it  defaults  to
	      using  non-blocking  I/O.	  (Note	 that ssh prefers non-blocking
	      I/O.)

			   31 Dec 2009			       37

rsync(1)						 rsync(1)

       -i, --itemize-changes
	      Requests a simple itemized list of the changes  that  are	 being
	      made to each file, including attribute changes.  This is exactly
	      the same as specifying --out-format='%i %n%L'.   If  you	repeat
	      the option, unchanged files will also be output, but only if the
	      receiving rsync is at least version 2.6.7 (you can use -vv  with
	      older  versions  of  rsync, but that also turns on the output of
	      other verbose messages).

	      The %i escape has a cryptic output that is 11 letters long.  The
	      general  format  is  like	 the  string  YXcstpoguax,  where Y is
	      replaced by the type of update being done, X is replaced by  the
	      file-type,  and  the other letters represent attributes that may
	      be output if they are being modified.

	      The update types that replace the Y are as follows:

	      o	     A < means that a file is being transferred to the	remote
		     host (sent).

	      o	     A	>  means that a file is being transferred to the local
		     host (received).

	      o	     A c means that a local change/creation is	occurring  for
		     the  item	(such  as  the	creation of a directory or the
		     changing of a symlink, etc.).

	      o	     A h means that the item is a hard link  to	 another  item
		     (requires --hard-links).

	      o	     A	.  means that the item is not being updated (though it
		     might have attributes that are being modified).

	      o	     A * means that the rest of the itemized-output area  con-
		     tains a message (e.g. deleting).

	      The  file-types  that replace the X are: f for a file, a d for a
	      directory, an L for a symlink, a D for a device, and a S	for  a
	      special file (e.g. named sockets and fifos).

	      The  other  letters  in  the string above are the actual letters
	      that will be output if the associated attribute for the item  is
	      being  updated  or  a . for no change.  Three exceptions to this
	      are: (1) a newly created item replaces each letter with a +, (2)
	      an  identical  item  replaces  the  dots with spaces, and (3) an
	      unknown attribute replaces each letter with a ? (this can happen
	      when talking to an older rsync).

	      The attribute that is associated with each letter is as follows:

	      o	     A c means either that a  regular  file  has  a  different

			   31 Dec 2009			       38

rsync(1)						 rsync(1)

		     checksum (requires --checksum) or that a symlink, device,
		     or special file has a changed value.  Note	 that  if  you
		     are sending files to an rsync prior to 3.0.1, this change
		     flag will be present only for checksum-differing  regular
		     files.

	      o	     A	s  means  the  size of a regular file is different and
		     will be updated by the file transfer.

	      o	     A t means the modification time is different and is being
		     updated  to  the  senders	value  (requires --times).  An
		     alternate value of T means	 that  the  modification  time
		     will  be  set  to the transfer time, which happens when a
		     file/symlink/device is updated without --times and when a
		     symlink  is  changed  and the receiver cant set its time.
		     (Note: when using an rsync 3.0.0 client,  you  might  see
		     the  s  flag combined with t instead of the proper T flag
		     for this time-setting failure.)

	      o	     A p means the permissions are  different  and  are	 being
		     updated to the senders value (requires --perms).

	      o	     An o means the owner is different and is being updated to
		     the senders value (requires --owner and super-user privi-
		     leges).

	      o	     A	g means the group is different and is being updated to
		     the senders value (requires --group and the authority  to
		     set the group).

	      o	     The u slot is reserved for future use.

	      o	     The a means that the ACL information changed.

	      o	     The  x  means  that  the  extended	 attribute information
		     changed.

	      One other output is possible:  when deleting files, the %i  will
	      output  the string *deleting for each item that is being removed
	      (assuming that you are talking to a recent enough rsync that  it
	      logs deletions instead of outputting them as a verbose message).

       --out-format=FORMAT
	      This allows you to specify exactly what the rsync client outputs
	      to  the user on a per-update basis.  The format is a text string
	      containing embedded single-character escape  sequences  prefixed
	      with  a  percent	(%)  character.	   A default format of %n%L is
	      assumed if -v is specified (which reports the name of  the  file
	      and,  if	the item is a link, where it points).  For a full list
	      of the possible escape characters, see the log format setting in
	      the rsyncd.conf manpage.

			   31 Dec 2009			       39

rsync(1)						 rsync(1)

	      Specifying  the --out-format option will mention each file, dir,
	      etc. that gets updated in a significant way (a transferred file,
	      a	 recreated  symlink/device, or a touched directory).  In addi-
	      tion, if the itemize-changes escape  (%i)	 is  included  in  the
	      string (e.g. if the --itemize-changes option was used), the log-
	      ging of names increases to mention any item that is  changed  in
	      any  way (as long as the receiving side is at least 2.6.4).  See
	      the --itemize-changes option for a description of the output  of
	      %i.

	      Rsync  will output the out-format string prior to a files trans-
	      fer unless one of the transfer-statistic escapes	is  requested,
	      in which case the logging is done at the end of the files trans-
	      fer.  When this late logging is in effect and --progress is also
	      specified,  rsync	 will  also  output the name of the file being
	      transferred prior to  its	 progress  information	(followed,  of
	      course, by the out-format output).

       --log-file=FILE
	      This  option  causes  rsync  to  log what it is doing to a file.
	      This is similar to the logging that a daemon does,  but  can  be
	      requested	 for  the client side and/or the server side of a non-
	      daemon transfer.	If specified as a client option, transfer log-
	      ging  will be enabled with a default format of %i %n%L.  See the
	      --log-file-format option if you wish to override this.

	      Heres a example command that requests the	 remote	 side  to  log
	      what is happening:

		rsync -av --rsync-path=rsync --log-file=/tmp/rlog src/ dest/

	      This  is	very  useful  if you need to debug why a connection is
	      closing unexpectedly.

       --log-file-format=FORMAT
	      This allows you to specify exactly what  per-update  logging  is
	      put into the file specified by the --log-file option (which must
	      also be specified for this option to have any effect).   If  you
	      specify  an empty string, updated files will not be mentioned in
	      the log file.  For a list of the possible escape characters, see
	      the log format setting in the rsyncd.conf manpage.

	      The  default  FORMAT  used  if  --log-file is specified and this
	      option is not is %i %n%L.

       --stats
	      This tells rsync to print a verbose set  of  statistics  on  the
	      file  transfer, allowing you to tell how effective rsyncs delta-
	      transfer algorithm is for your data.

			   31 Dec 2009			       40

rsync(1)						 rsync(1)

	      The current statistics are as follows:

	      o	     Number of files is the count of all files (in the generic
		     sense), which includes directories, symlinks, etc.

	      o	     Number  of files transferred is the count of normal files
		     that were updated via  rsyncs  delta-transfer  algorithm,
		     which does not include created dirs, symlinks, etc.

	      o	     Total file size is the total sum of all file sizes in the
		     transfer.	This does not count any size  for  directories
		     or	 special files, but does include the size of symlinks.

	      o	     Total transferred file size is the total sum of all files
		     sizes for just the transferred files.

	      o	     Literal  data  is	how much unmatched file-update data we
		     had to send to  the  receiver  for	 it  to	 recreate  the
		     updated files.

	      o	     Matched  data  is	how much data the receiver got locally
		     when recreating the updated files.

	      o	     File list size is how big the file-list data was when the
		     sender sent it to the receiver.  This is smaller than the
		     in-memory size for the file list due to some  compressing
		     of duplicated data when rsync sends the list.

	      o	     File  list	 generation time is the number of seconds that
		     the sender spent creating the file list.  This requires a
		     modern  rsync on the sending side for this to be present.

	      o	     File list transfer time is the number of seconds that the
		     sender spent sending the file list to the receiver.

	      o	     Total bytes sent is the count of all the bytes that rsync
		     sent from the client side to the server side.

	      o	     Total bytes received is  the  count  of  all  non-message
		     bytes  that  rsync	 received  by the client side from the
		     server side.  Non-message bytes means that we dont	 count
		     the  bytes	 for a verbose message that the server sent to
		     us, which makes the stats more consistent.

       -8, --8-bit-output
	      This tells rsync to leave all high-bit characters	 unescaped  in
	      the output instead of trying to test them to see if theyre valid
	      in the current locale and escaping the invalid ones.   All  con-
	      trol  characters (but never tabs) are always escaped, regardless
	      of this options setting.

	      The escape idiom that started in 2.6.7 is to  output  a  literal

			   31 Dec 2009			       41

rsync(1)						 rsync(1)

	      backslash	 (\)  and a hash (#), followed by exactly 3 octal dig-
	      its.  For example, a newline would output as \#012.   A  literal
	      backslash that is in a filename is not escaped unless it is fol-
	      lowed by a hash and 3 digits (0-9).

       -h, --human-readable
	      Output numbers in a more human-readable format.  This makes  big
	      numbers output using larger units, with a K, M, or G suffix.  If
	      this option was specified once, these  units  are	 K  (1000),  M
	      (1000*1000),  and G (1000*1000*1000); if the option is repeated,
	      the units are powers of 1024 instead of 1000.

       --partial
	      By default, rsync will delete any partially transferred file  if
	      the  transfer  is	 interrupted. In some circumstances it is more
	      desirable to keep partially transferred files. Using the	--par-
	      tial  option  tells  rsync to keep the partial file which should
	      make a subsequent transfer of the rest of the file much  faster.

       --partial-dir=DIR
	      A	 better way to keep partial files than the --partial option is
	      to specify a DIR that will be used  to  hold  the	 partial  data
	      (instead	of  writing  it	 out to the destination file).	On the
	      next transfer, rsync will use a file found in this dir  as  data
	      to  speed	 up  the resumption of the transfer and then delete it
	      after it has served its purpose.

	      Note that if --whole-file is specified (or  implied),  any  par-
	      tial-dir	file  that  is	found for a file that is being updated
	      will simply be removed (since rsync  is  sending	files  without
	      using rsyncs delta-transfer algorithm).

	      Rsync will create the DIR if it is missing (just the last dir --
	      not the whole path).  This makes it easy to use a relative  path
	      (such  as --partial-dir=.rsync-partial) to have rsync create the
	      partial-directory	 in  the  destination  files  directory	  when
	      needed,  and  then  remove  it  again  when  the partial file is
	      deleted.

	      If the partial-dir value is not an absolute path, rsync will add
	      an  exclude rule at the end of all your existing excludes.  This
	      will prevent the sending of any partial-dir files that may exist
	      on the sending side, and will also prevent the untimely deletion
	      of partial-dir items on the receiving  side.   An	 example:  the
	      above  --partial-dir  option  would add the equivalent of -f '-p
	      .rsync-partial/' at the end of any other filter rules.

	      If you are supplying your own exclude rules, you may need to add
	      your  own	 exclude/hide/protect rule for the partial-dir because
	      (1) the auto-added rule may be ineffective at the	 end  of  your
	      other  rules,  or	 (2)  you  may wish to override rsyncs exclude

			   31 Dec 2009			       42

rsync(1)						 rsync(1)

	      choice.  For instance, if you want to make  rsync	 clean-up  any
	      left-over	 partial-dirs  that  may  be  lying around, you should
	      specify --delete-after and add a risk filter rule, e.g.	-f  'R
	      .rsync-partial/'.	 (Avoid using --delete-before or --delete-dur-
	      ing unless you dont need rsync to use any of the left-over  par-
	      tial-dir data during the current run.)

	      IMPORTANT:  the  --partial-dir  should  not be writable by other
	      users or it is a security risk.  E.g. AVOID /tmp.

	      You can also set the  partial-dir	 value	the  RSYNC_PARTIAL_DIR
	      environment  variable.  Setting this in the environment does not
	      force --partial to be enabled, but rather it affects where  par-
	      tial  files  go  when  --partial	is  specified.	 For instance,
	      instead of using --partial-dir=.rsync-tmp along with --progress,
	      you  could  set RSYNC_PARTIAL_DIR=.rsync-tmp in your environment
	      and then just use the -P option  to  turn	 on  the  use  of  the
	      .rsync-tmp  dir  for partial transfers.  The only times that the
	      --partial option does not look for this  environment  value  are
	      (1) when --inplace was specified (since --inplace conflicts with
	      --partial-dir), and (2) when --delay-updates was specified  (see
	      below).

	      For  the	purposes of the daemon-configs refuse options setting,
	      --partial-dir does not imply  --partial.	 This  is  so  that  a
	      refusal  of  the	--partial  option  can be used to disallow the
	      overwriting of destination files with a partial transfer,	 while
	      still allowing the safer idiom provided by --partial-dir.

       --delay-updates
	      This  option puts the temporary file from each updated file into
	      a holding directory until the end of the transfer, at which time
	      all  the files are renamed into place in rapid succession.  This
	      attempts to make the updating of the files a little more atomic.
	      By default the files are placed into a directory named .~tmp~ in
	      each files destination directory, but  if	 youve	specified  the
	      --partial-dir  option, that directory will be used instead.  See
	      the comments in the --partial-dir section for  a	discussion  of
	      how this .~tmp~ dir will be excluded from the transfer, and what
	      you can do if you want rsync to cleanup  old  .~tmp~  dirs  that
	      might be lying around.  Conflicts with --inplace and --append.

	      This  option uses more memory on the receiving side (one bit per
	      file transferred) and also requires enough free  disk  space  on
	      the receiving side to hold an additional copy of all the updated
	      files.  Note also that you should not use an  absolute  path  to
	      --partial-dir  unless (1) there is no chance of any of the files
	      in the transfer having the same  name  (since  all  the  updated
	      files  will  be put into a single directory if the path is abso-
	      lute) and (2) there are no mount points in the hierarchy	(since
	      the  delayed  updates  will  fail	 if  they cant be renamed into
	      place).

			   31 Dec 2009			       43

rsync(1)						 rsync(1)

	      See also the atomic-rsync perl script in the support subdir  for
	      an   update   algorithm  that  is	 even  more  atomic  (it  uses
	      --link-dest and a parallel hierarchy of files).

       -m, --prune-empty-dirs
	      This option tells the receiving rsync to get rid of empty direc-
	      tories  from  the	 file-list,  including nested directories that
	      have no non-directory children.  This is useful for avoiding the
	      creation	of  a  bunch  of  useless directories when the sending
	      rsync  is	 recursively  scanning	a  hierarchy  of  files	 using
	      include/exclude/filter rules.

	      Note  that  the  use  of	transfer rules, such as the --min-size
	      option, does not affect what goes into the file list,  and  thus
	      does not leave directories empty, even if none of the files in a
	      directory match the transfer rule.

	      Because the file-list is actually being pruned, this option also
	      affects  what  directories  get deleted when a delete is active.
	      However, keep in mind that excluded files	 and  directories  can
	      prevent existing items from being deleted due to an exclude both
	      hiding source files and protecting destination files.   See  the
	      perishable filter-rule option for how to avoid this.

	      You  can	prevent	 the pruning of certain empty directories from
	      the file-list by using a global protect filter.	For  instance,
	      this option would ensure that the directory emptydir was kept in
	      the file-list:

	      --filter protect emptydir/

	      Heres an example that copies all .pdf files in a hierarchy, only
	      creating	the necessary destination directories to hold the .pdf
	      files, and ensures that any superfluous files and directories in
	      the  destination are removed (note the hide filter of non-direc-
	      tories being used instead of an exclude):

	      rsync -avm --del --include=*.pdf -f hide,! */ src/ dest

	      If you didnt want to remove superfluous destination  files,  the
	      more  time-honored options of --include='*/' --exclude='*' would
	      work fine in place of the hide-filter (if that is	 more  natural
	      to you).

       --progress
	      This  option  tells  rsync  to  print  information  showing  the
	      progress of the transfer. This gives a bored user	 something  to
	      watch.  Implies --verbose if it wasnt already specified.

	      While  rsync  is	transferring  a	 regular  file,	 it  updates a

			   31 Dec 2009			       44

rsync(1)						 rsync(1)

	      progress line that looks like this:

		    782448  63%	 110.64kB/s    0:00:04

	      In this example, the receiver has reconstructed 782448 bytes  or
	      63%  of the senders file, which is being reconstructed at a rate
	      of 110.64 kilobytes per second, and the transfer will finish  in
	      4 seconds if the current rate is maintained until the end.

	      These  statistics	 can  be  misleading  if rsyncs delta-transfer
	      algorithm is in use.  For example, if the senders file  consists
	      of the basis file followed by additional data, the reported rate
	      will probably drop dramatically when the receiver	 gets  to  the
	      literal data, and the transfer will probably take much longer to
	      finish than the receiver	estimated  as  it  was	finishing  the
	      matched part of the file.

	      When  the	 file  transfer	 finishes, rsync replaces the progress
	      line with a summary line that looks like this:

		   1238099 100%	 146.38kB/s    0:00:08	(xfer#5, to-check=169/396)

	      In this example, the file was 1238099 bytes long in  total,  the
	      average rate of transfer for the whole file was 146.38 kilobytes
	      per second over the 8 seconds that it took to complete,  it  was
	      the 5th transfer of a regular file during the current rsync ses-
	      sion, and there are 169 more files for the receiver to check (to
	      see  if  they  are  up-to-date  or not) remaining out of the 396
	      total files in the file-list.

       -P     The -P option is equivalent to --partial --progress.   Its  pur-
	      pose  is to make it much easier to specify these two options for
	      a long transfer that may be interrupted.

       --password-file
	      This option allows you to provide	 a  password  in  a  file  for
	      accessing an rsync daemon.  The file must not be world readable.
	      It should contain just the password as a single line.

	      This option does not supply a password to a remote shell	trans-
	      port  such  as  ssh; to learn how to do that, consult the remote
	      shells documentation.  When accessing an rsync  daemon  using  a
	      remote  shell  as	 the  transport,  this	option only comes into
	      effect after the remote shell finishes its authentication	 (i.e.
	      if  you  have  also  specified  a password in the daemons config
	      file).

       --list-only
	      This option will cause the source files to be listed instead  of

			   31 Dec 2009			       45

rsync(1)						 rsync(1)

	      transferred.   This  option  is  inferred	 if  there is a single
	      source arg and no destination specified, so its main  uses  are:
	      (1)  to turn a copy command that includes a destination arg into
	      a file-listing command, or (2) to be able to specify  more  than
	      one source arg (note: be sure to include the destination).  Cau-
	      tion: keep in mind  that	a  source  arg	with  a	 wild-card  is
	      expanded by the shell into multiple args, so it is never safe to
	      try to list such an arg without using this option.  For example:

		  rsync -av --list-only foo* dest/

	      Compatibility  note:   when requesting a remote listing of files
	      from an rsync that is version 2.6.3 or older, you may  encounter
	      an  error	 if  you  ask  for  a  non-recursive listing.  This is
	      because a file listing implies the --dirs	 option	 w/o  --recur-
	      sive,  and  older	 rsyncs	 dont have that option.	 To avoid this
	      problem, either specify the --no-dirs option (if you  dont  need
	      to  expand  a  directorys	 content),  or	turn  on recursion and
	      exclude the content of subdirectories: -r --exclude='/*/*'.

       --bwlimit=KBPS
	      This option allows you to specify a  maximum  transfer  rate  in
	      kilobytes	 per  second. This option is most effective when using
	      rsync with large files (several megabytes and up).  Due  to  the
	      nature  of  rsync	 transfers,  blocks  of data are sent, then if
	      rsync determines the transfer was too fast, it will wait	before
	      sending  the  next data block. The result is an average transfer
	      rate equaling the specified limit. A value of zero specifies  no
	      limit.

       --write-batch=FILE
	      Record  a	 file  that  can later be applied to another identical
	      destination with --read-batch. See the BATCH  MODE  section  for
	      details, and also the --only-write-batch option.

       --only-write-batch=FILE
	      Works like --write-batch, except that no updates are made on the
	      destination system when  creating	 the  batch.   This  lets  you
	      transport	 the  changes to the destination system via some other
	      means and then apply the changes via --read-batch.

	      Note that you can feel free to write the batch directly to  some
	      portable	media:	if this media fills to capacity before the end
	      of the transfer, you can just apply that partial transfer to the
	      destination  and repeat the whole process to get the rest of the
	      changes (as long as you dont mind a partially  updated  destina-
	      tion system while the multi-update cycle is happening).

	      Also note that you only save bandwidth when pushing changes to a
	      remote system  because  this  allows  the	 batched  data	to  be

			   31 Dec 2009			       46

rsync(1)						 rsync(1)

	      diverted	from  the sender into the batch file without having to
	      flow over the wire to the receiver (when pulling, the sender  is
	      remote, and thus cant write the batch).

       --read-batch=FILE
	      Apply  all of the changes stored in FILE, a file previously gen-
	      erated by --write-batch.	If FILE is -, the batch data  will  be
	      read  from  standard  input.   See  the  BATCH  MODE section for
	      details.

       --protocol=NUM
	      Force an older protocol version to be used.  This is useful  for
	      creating	a  batch file that is compatible with an older version
	      of rsync.	 For instance, if rsync 2.6.4 is being used  with  the
	      --write-batch  option,  but  rsync 2.6.3 is what will be used to
	      run the --read-batch option, you should use  --protocol=28  when
	      creating	the  batch file to force the older protocol version to
	      be used in the batch file (assuming you cant upgrade  the	 rsync
	      on the reading system).

       --iconv=CONVERT_SPEC
	      Rsync  can  convert  filenames between character sets using this
	      option.  Using a CONVERT_SPEC of . tells rsync to	 look  up  the
	      default  character-set via the locale setting.  Alternately, you
	      can fully specify what conversion to do by giving a local and  a
	      remote   charset	 separated   by	  a   comma   in   the	 order
	      --iconv=LOCAL,REMOTE, e.g.  --iconv=utf8,iso88591.   This	 order
	      ensures that the option will stay the same whether youre pushing
	      or pulling files.	 Finally, you can specify either --no-iconv or
	      a	 CONVERT_SPEC  of  -  to turn off any conversion.  The default
	      setting of  this	option	is  site-specific,  and	 can  also  be
	      affected via the RSYNC_ICONV environment variable.

	      For  a  list of what charset names your local iconv library sup-
	      ports, you can run iconv --list.

	      If you specify the --protect-args option (-s), rsync will trans-
	      late  the	 filenames  you	 specify  on the command-line that are
	      being sent to  the  remote  host.	  See  also  the  --files-from
	      option.

	      Note  that  rsync	 does not do any conversion of names in filter
	      files (including include/exclude files).	It is  up  to  you  to
	      ensure  that  youre  specifying matching rules that can match on
	      both sides of the transfer.  For instance, you can specify extra
	      include/exclude  rules  if there are filename differences on the
	      two sides that need to be accounted for.

	      When you pass an --iconv option to an rsync daemon  that	allows
	      it, the daemon uses the charset specified in its charset config-
	      uration parameter regardless of the remote charset you  actually

			   31 Dec 2009			       47

rsync(1)						 rsync(1)

	      pass.  Thus, you may feel free to specify just the local charset
	      for a daemon transfer (e.g. --iconv=utf8).

       -4, --ipv4 or -6, --ipv6
	      Tells rsync to prefer IPv4/IPv6  when  creating  sockets.	  This
	      only affects sockets that rsync has direct control over, such as
	      the outgoing socket when directly contacting  an	rsync  daemon.
	      See also these options in the --daemon mode section.

	      If  rsync	 was  complied	without	 support  for IPv6, the --ipv6
	      option will have no effect.  The --version output will tell  you
	      if this is the case.

       --checksum-seed=NUM
	      Set  the checksum seed to the integer NUM.  This 4 byte checksum
	      seed is included in each block and  file	checksum  calculation.
	      By  default  the	checksum  seed	is generated by the server and
	      defaults to the current time() .	This option is used to	set  a
	      specific	checksum  seed,	 which is useful for applications that
	      want repeatable block and file checksums, or in the  case	 where
	      the  user	 wants	a more random checksum seed.  Setting NUM to 0
	      causes rsync to use the default of time() for checksum seed.

DAEMON OPTIONS
       The options allowed when starting an rsync daemon are as follows:

       --daemon
	      This tells rsync that it is to run as a daemon.  The daemon  you
	      start  running  may  be accessed using an rsync client using the
	      host::module or rsync://host/module/ syntax.

	      If standard input is a socket then rsync will assume that it  is
	      being  run  via inetd, otherwise it will detach from the current
	      terminal and become a background daemon.	The daemon  will  read
	      the  config  file (rsyncd.conf) on each connect made by a client
	      and respond to requests accordingly.  See the rsyncd.conf(5) man
	      page for more details.

       --address
	      By default rsync will bind to the wildcard address when run as a
	      daemon with the --daemon option.	The  --address	option	allows
	      you  to  specify a specific IP address (or hostname) to bind to.
	      This makes virtual hosting  possible  in	conjunction  with  the
	      --config	option.	  See  also  the  address global option in the
	      rsyncd.conf manpage.

			   31 Dec 2009			       48

rsync(1)						 rsync(1)

       --bwlimit=KBPS
	      This option allows you to specify a  maximum  transfer  rate  in
	      kilobytes	 per second for the data the daemon sends.  The client
	      can still specify a smaller --bwlimit value, but their requested
	      value  will  be  rounded down if they try to exceed it.  See the
	      client version of this option (above) for some extra details.

       --config=FILE
	      This specifies an alternate config file than the default.	  This
	      is  only	relevant  when	--daemon is specified.	The default is
	      /etc/rsyncd.conf unless the daemon  is  running  over  a	remote
	      shell program and the remote user is not the super-user; in that
	      case the default is rsyncd.conf in the current directory	(typi-
	      cally $HOME).

       --no-detach
	      When  running  as	 a  daemon, this option instructs rsync to not
	      detach itself and become a background process.  This  option  is
	      required	when  running  as a service on Cygwin, and may also be
	      useful when rsync is supervised by a program such as daemontools
	      or  AIXs System Resource Controller.  --no-detach is also recom-
	      mended when rsync is run under a debugger.  This option  has  no
	      effect if rsync is run from inetd or sshd.

       --port=PORT
	      This  specifies  an  alternate TCP port number for the daemon to
	      listen on rather than the default of 873.	  See  also  the  port
	      global option in the rsyncd.conf manpage.

       --log-file=FILE
	      This  option  tells  the	rsync daemon to use the given log-file
	      name instead of using the log file setting in the config file.

       --log-file-format=FORMAT
	      This option tells the rsync  daemon  to  use  the	 given	FORMAT
	      string  instead  of  using  the log format setting in the config
	      file.  It also enables transfer logging  unless  the  string  is
	      empty, in which case transfer logging is turned off.

       --sockopts
	      This  overrides  the  socket  options setting in the rsyncd.conf
	      file and has the same syntax.

       -v, --verbose
	      This option increases the amount of information the daemon  logs
	      during  its  startup phase.  After the client connects, the dae-
	      mons verbosity level will be controlled by the options that  the

			   31 Dec 2009			       49

rsync(1)						 rsync(1)

	      client  used and the max verbosity setting in the modules config
	      section.

       -4, --ipv4 or -6, --ipv6
	      Tells rsync to prefer IPv4/IPv6 when creating the incoming sock-
	      ets  that	 the  rsync daemon will use to listen for connections.
	      One of these options may be required in older versions of	 Linux
	      to  work around an IPv6 bug in the kernel (if you see an address
	      already in use error when nothing else is using  the  port,  try
	      specifying --ipv6 or --ipv4 when starting the daemon).

	      If  rsync	 was  complied	without	 support  for IPv6, the --ipv6
	      option will have no effect.  The --version output will tell  you
	      if this is the case.

       -h, --help
	      When  specified after --daemon, print a short help page describ-
	      ing the options available for starting an rsync daemon.

FILTER RULES
       The filter rules allow for flexible selection of which files to	trans-
       fer  (include)  and  which  files  to skip (exclude).  The rules either
       directly specify include/exclude patterns or  they  specify  a  way  to
       acquire	more include/exclude patterns (e.g. to read them from a file).

       As the list of files/directories to transfer  is	 built,	 rsync	checks
       each  name  to  be transferred against the list of include/exclude pat-
       terns in turn, and the first matching pattern is acted on:  if it is an
       exclude pattern, then that file is skipped; if it is an include pattern
       then that filename is not skipped; if no	 matching  pattern  is	found,
       then the filename is not skipped.

       Rsync  builds  an ordered list of filter rules as specified on the com-
       mand-line.  Filter rules have the following syntax:

	      RULE [PATTERN_OR_FILENAME]
	      RULE,MODIFIERS [PATTERN_OR_FILENAME]

       You have your choice of using either  short  or	long  RULE  names,  as
       described  below.   If you use a short-named rule, the , separating the
       RULE from the MODIFIERS is optional.  The PATTERN or FILENAME that fol-
       lows  (when present) must come after either a single space or an under-
       score (_).  Here are the available rule prefixes:

	      exclude, - specifies an exclude pattern.
	      include, + specifies an include pattern.
	      merge, . specifies a merge-file to read for more rules.
	      dir-merge, : specifies a per-directory merge-file.
	      hide, H specifies a pattern for hiding files from the  transfer.

			   31 Dec 2009			       50

rsync(1)						 rsync(1)

	      show, S files that match the pattern are not hidden.
	      protect,	P  specifies a pattern for protecting files from dele-
	      tion.
	      risk, R files that match the pattern are not protected.
	      clear, ! clears the current include/exclude list (takes no arg)

       When rules are being read from a file, empty lines are ignored, as  are
       comment lines that start with a #.

       Note that the --include/--exclude command-line options do not allow the
       full range of rule parsing as described above -- they  only  allow  the
       specification  of  include/exclude patterns plus a ! token to clear the
       list (and the normal comment parsing when rules are read from a	file).
       If  a pattern does not begin with -  (dash, space) or +	(plus, space),
       then the rule will be interpreted as if +  (for an include option) or -
	 (for  an  exclude  option)  were  prefixed to the string.  A --filter
       option, on the other hand, must always contain either a short  or  long
       rule name at the start of the rule.

       Note  also that the --filter, --include, and --exclude options take one
       rule/pattern each. To add multiple ones, you can repeat the options  on
       the  command-line, use the merge-file syntax of the --filter option, or
       the --include-from/--exclude-from options.

INCLUDE/EXCLUDE PATTERN RULES
       You can include and exclude files by specifying patterns using  the  +,
       -, etc. filter rules (as introduced in the FILTER RULES section above).
       The include/exclude rules  each	specify	 a  pattern  that  is  matched
       against the names of the files that are going to be transferred.	 These
       patterns can take several forms:

       o      if the pattern starts with a / then it is anchored to a particu-
	      lar  spot	 in  the  hierarchy  of files, otherwise it is matched
	      against the end of the pathname.	This is similar to a leading ^
	      in  regular expressions.	Thus /foo would match a name of foo at
	      either the root of the transfer (for a global rule)  or  in  the
	      merge-files  directory  (for a per-directory rule).  An unquali-
	      fied foo would match a name of foo anywhere in the tree  because
	      the  algorithm  is  applied  recursively	from  the top down; it
	      behaves as if each path component gets a turn at being  the  end
	      of the filename.	Even the unanchored sub/foo would match at any
	      point in the hierarchy where a foo was found within a  directory
	      named  sub.   See	 the section on ANCHORING INCLUDE/EXCLUDE PAT-
	      TERNS for a full discussion of how to  specify  a	 pattern  that
	      matches at the root of the transfer.

       o      if  the  pattern	ends with a / then it will only match a direc-
	      tory, not a regular file, symlink, or device.

       o      rsync chooses between doing a simple string match	 and  wildcard
	      matching	by checking if the pattern contains one of these three

			   31 Dec 2009			       51

rsync(1)						 rsync(1)

	      wildcard characters: *, ?, and [ .

       o      a * matches any path component, but it stops at slashes.

       o      use ** to match anything, including slashes.

       o      a ? matches any character except a slash (/).

       o      a [ introduces a character class, such as [a-z] or  [[:alpha:]].

       o      in a wildcard pattern, a backslash can be used to escape a wild-
	      card character, but it is matched literally  when	 no  wildcards
	      are present.

       o      if the pattern contains a / (not counting a trailing /) or a **,
	      then it is matched against  the  full  pathname,	including  any
	      leading  directories. If the pattern doesnt contain a / or a **,
	      then it is matched only against the final component of the file-
	      name.   (Remember	 that  the algorithm is applied recursively so
	      full filename can actually be any portion of  a  path  from  the
	      starting directory on down.)

       o      a	 trailing  dir_name/***	 will  match both the directory (as if
	      dir_name/ had been specified) and everything  in	the  directory
	      (as if dir_name/** had been specified).  This behavior was added
	      in version 2.6.7.

       Note that, when using the --recursive (-r) option (which is implied  by
       -a),  every subcomponent of every path is visited from the top down, so
       include/exclude patterns get applied recursively to each	 subcomponents
       full  name  (e.g.  to  include  /foo/bar/baz the subcomponents /foo and
       /foo/bar must not be excluded).	The exclude patterns  actually	short-
       circuit	the  directory	traversal  stage when rsync finds the files to
       send.  If a pattern excludes a particular parent directory, it can ren-
       der  a deeper include pattern ineffectual because rsync did not descend
       through that excluded section of the hierarchy.	This  is  particularly
       important when using a trailing * rule.	For instance, this wont work:

	      + /some/path/this-file-will-not-be-found
	      + /file-is-included
	      - *

       This fails because the parent directory some is excluded by the * rule,
       so rsync never visits any of the files in the some or some/path	direc-
       tories.	One solution is to ask for all directories in the hierarchy to
       be included by using a single rule: + */ (put it somewhere before the -
       *  rule), and perhaps use the --prune-empty-dirs option.	 Another solu-
       tion is to add specific include rules for all the parent dirs that need
       to be visited.  For instance, this set of rules works fine:

	      + /some/
	      + /some/path/

			   31 Dec 2009			       52

rsync(1)						 rsync(1)

	      + /some/path/this-file-is-found
	      + /file-also-included
	      - *

       Here are some examples of exclude/include matching:

       o      - *.o would exclude all names matching *.o

       o      -	 /foo  would  exclude  a  file (or directory) named foo in the
	      transfer-root directory

       o      - foo/ would exclude any directory named foo

       o      - /foo/*/bar would exclude any file named bar which  is  at  two
	      levels  below  a directory named foo in the transfer-root direc-
	      tory

       o      - /foo/**/bar would exclude any file named bar two or more  lev-
	      els below a directory named foo in the transfer-root directory

       o      The combination of + */, + *.c, and - * would include all direc-
	      tories and C  source  files  but	nothing	 else  (see  also  the
	      --prune-empty-dirs option)

       o      The  combination	of  + foo/, + foo/bar.c, and - * would include
	      only the foo directory and foo/bar.c (the foo directory must  be
	      explicitly included or it would be excluded by the *)

       The following modifiers are accepted after a + or -:

       o      A	 /  specifies  that the include/exclude rule should be matched
	      against the absolute pathname of the current item.  For example,
	      -/ /etc/passwd would exclude the passwd file any time the trans-
	      fer was sending files from the /etc directory, and -/ subdir/foo
	      would  always exclude foo when it is in a dir named subdir, even
	      if foo is at the root of the current transfer.

       o      A ! specifies that the include/exclude should take effect if the
	      pattern  fails  to match.	 For instance, -! */ would exclude all
	      non-directories.

       o      A C is used to indicate that all the  global  CVS-exclude	 rules
	      should  be  inserted  as	excludes  in  place of the -C.	No arg
	      should follow.

       o      An s is used to indicate that the rule applies  to  the  sending
	      side.   When  a rule affects the sending side, it prevents files
	      from being transferred.  The default is for  a  rule  to	affect
	      both sides unless --delete-excluded was specified, in which case
	      default rules become sender-side only.  See also	the  hide  (H)

			   31 Dec 2009			       53

rsync(1)						 rsync(1)

	      and  show (S) rules, which are an alternate way to specify send-
	      ing-side includes/excludes.

       o      An r is used to indicate that the rule applies to the  receiving
	      side.  When a rule affects the receiving side, it prevents files
	      from being deleted.  See the s modifier for more info.  See also
	      the  protect  (P) and risk (R) rules, which are an alternate way
	      to specify receiver-side includes/excludes.

       o      A p indicates that a rule is  perishable,	 meaning  that	it  is
	      ignored  in  directories	that are being deleted.	 For instance,
	      the -C options default rules that exclude things	like  CVS  and
	      *.o  are	marked as perishable, and will not prevent a directory
	      that was removed on the source from being deleted on the	desti-
	      nation.

MERGE-FILE FILTER RULES
       You can merge whole files into your filter rules by specifying either a
       merge (.) or a dir-merge (:) filter rule (as introduced in  the	FILTER
       RULES section above).

       There  are  two	kinds  of merged files -- single-instance (.) and per-
       directory (:).  A single-instance merge file is read one time, and  its
       rules are incorporated into the filter list in the place of the . rule.
       For per-directory merge files, rsync will scan every directory that  it
       traverses for the named file, merging its contents when the file exists
       into the current list of inherited  rules.   These  per-directory  rule
       files  must  be	created	 on the sending side because it is the sending
       side that is being scanned for the available files to transfer.	 These
       rule files may also need to be transferred to the receiving side if you
       want them to affect what files  dont  get  deleted  (see	 PER-DIRECTORY
       RULES AND DELETE below).

       Some examples:

	      merge /etc/rsync/default.rules
	      dir-merge .per-dir-filter
	      dir-merge,n- .non-inherited-per-dir-excludes
	      :n- .non-inherited-per-dir-excludes

       The following modifiers are accepted after a merge or dir-merge rule:

       o      A	 - specifies that the file should consist of only exclude pat-
	      terns, with no other rule-parsing except for in-file comments.

       o      A + specifies that the file should consist of only include  pat-
	      terns, with no other rule-parsing except for in-file comments.

       o      A	 C  is a way to specify that the file should be read in a CVS-
	      compatible manner.  This turns on n, w, and -, but  also	allows

			   31 Dec 2009			       54

rsync(1)						 rsync(1)

	      the  list-clearing token (!) to be specified.  If no filename is
	      provided, .cvsignore is assumed.

       o      A e will exclude the merge-file name  from  the  transfer;  e.g.
	      dir-merge,e .rules is like dir-merge .rules and - .rules.

       o      An  n  specifies that the rules are not inherited by subdirecto-
	      ries.

       o      A w specifies  that  the	rules  are  word-split	on  whitespace
	      instead  of the normal line-splitting.  This also turns off com-
	      ments.  Note: the space that separates the prefix from the  rule
	      is  treated  specially,  so  -  foo + bar is parsed as two rules
	      (assuming that prefix-parsing wasnt also disabled).

       o      You may also specify any of the modifiers for the + or  -	 rules
	      (above)  in  order  to  have the rules that are read in from the
	      file  default  to	 having	 that  modifier	 set.	For  instance,
	      merge,-/	.excl  would  treat the contents of .excl as absolute-
	      path excludes, while dir-merge,s .filt and :sC would  each  make
	      all their per-directory rules apply only on the sending side.

       Per-directory  rules  are inherited in all subdirectories of the direc-
       tory where the merge-file was found unless the  n  modifier  was	 used.
       Each  subdirectorys  rules  are prefixed to the inherited per-directory
       rules from its parents, which gives the newest rules a higher  priority
       than  the  inherited  rules.   The  entire  set	of dir-merge rules are
       grouped together in the spot where the merge-file was specified, so  it
       is  possible  to override dir-merge rules via a rule that got specified
       earlier in the list of global rules.  When the list-clearing  rule  (!)
       is  read	 from a per-directory file, it only clears the inherited rules
       for the current merge file.

       Another way to prevent a single rule from a dir-merge file  from	 being
       inherited  is  to  anchor it with a leading slash.  Anchored rules in a
       per-directory merge-file are relative to the merge-files directory,  so
       a pattern /foo would only match the file foo in the directory where the
       dir-merge filter file was found.

       Heres an example filter file which youd specify via --filter=. file:

	      merge /home/user/.global-filter
	      - *.gz
	      dir-merge .rules
	      + *.[ch]
	      - *.o

       This will merge the contents of the /home/user/.global-filter  file  at
       the  start  of  the list and also turns the .rules filename into a per-
       directory filter file.  All rules read in prior to  the	start  of  the
       directory  scan follow the global anchoring rules (i.e. a leading slash
       matches at the root of the transfer).

			   31 Dec 2009			       55

rsync(1)						 rsync(1)

       If a per-directory merge-file is specified with a path that is a parent
       directory of the first transfer directory, rsync will scan all the par-
       ent dirs from that starting point to the	 transfer  directory  for  the
       indicated  per-directory	 file.	 For instance, here is a common filter
       (see -F):

	      --filter=': /.rsync-filter'

       That rule tells rsync to scan for the file .rsync-filter in all	direc-
       tories  from the root down through the parent directory of the transfer
       prior to the start of the normal directory scan	of  the	 file  in  the
       directories  that  are  sent  as a part of the transfer.	 (Note: for an
       rsync daemon, the root is always the same as the modules path.)

       Some examples of this pre-scanning for per-directory files:

	      rsync -avF /src/path/ /dest/dir
	      rsync -av --filter=': ../../.rsync-filter' /src/path/ /dest/dir
	      rsync -av --filter=': .rsync-filter' /src/path/ /dest/dir

       The first two commands above will look for .rsync-filter in / and  /src
       before the normal scan begins looking for the file in /src/path and its
       subdirectories.	The last command avoids the parent-dir scan  and  only
       looks  for  the .rsync-filter files in each directory that is a part of
       the transfer.

       If you want to include the contents of a .cvsignore in  your  patterns,
       you should use the rule :C, which creates a dir-merge of the .cvsignore
       file, but parsed in a CVS-compatible  manner.   You  can	 use  this  to
       affect where the --cvs-exclude (-C) options inclusion of the per-direc-
       tory .cvsignore file gets placed into your  rules  by  putting  the  :C
       wherever	 you like in your filter rules.	 Without this, rsync would add
       the dir-merge rule for the .cvsignore file at the end of all your other
       rules  (giving  it a lower priority than your command-line rules).  For
       example:

	      cat <<EOT | rsync -avC --filter='. -' a/ b
	      + foo.o
	      :C
	      - *.old
	      EOT
	      rsync -avC --include=foo.o -f :C --exclude='*.old' a/ b

       Both of the above rsync commands are identical.	Each  one  will	 merge
       all the per-directory .cvsignore rules in the middle of the list rather
       than at the end.	 This allows their dir-specific rules to supersede the
       rules  that  follow  the	 :C  instead  of being subservient to all your
       rules.  To affect the other CVS exclude rules (i.e. the default list of
       exclusions,  the contents of $HOME/.cvsignore, and the value of $CVSIG-
       NORE) you should omit the -C command-line option and instead  insert  a
       -C rule into your filter rules; e.g. --filter=-C.

			   31 Dec 2009			       56

rsync(1)						 rsync(1)

LIST-CLEARING FILTER RULE
       You  can	 clear	the current include/exclude list by using the ! filter
       rule (as introduced in the FILTER RULES section	above).	  The  current
       list  is	 either	 the  global list of rules (if the rule is encountered
       while parsing the filter options)  or  a	 set  of  per-directory	 rules
       (which  are  inherited in their own sub-list, so a subdirectory can use
       this to clear out the parents rules).

ANCHORING INCLUDE/EXCLUDE PATTERNS
       As mentioned earlier, global include/exclude patterns are  anchored  at
       the  root  of the transfer (as opposed to per-directory patterns, which
       are anchored at the merge-files directory).  If you think of the trans-
       fer  as a subtree of names that are being sent from sender to receiver,
       the transfer-root is where the tree starts to be duplicated in the des-
       tination directory.  This root governs where patterns that start with a
       / match.

       Because the matching is relative to  the	 transfer-root,	 changing  the
       trailing	 slash on a source path or changing your use of the --relative
       option affects the path you need to use in your matching	 (in  addition
       to  changing how much of the file tree is duplicated on the destination
       host).  The following examples demonstrate this.

       Lets say that we want to match two source files, one with  an  absolute
       path  of	 /home/me/foo/bar,  and	 one with a path of /home/you/bar/baz.
       Here is how the various command choices differ for a 2-source transfer:

	      Example cmd: rsync -a /home/me /home/you /dest
	      +/- pattern: /me/foo/bar
	      +/- pattern: /you/bar/baz
	      Target file: /dest/me/foo/bar
	      Target file: /dest/you/bar/baz

	      Example cmd: rsync -a /home/me/ /home/you/ /dest
	      +/- pattern: /foo/bar		  (note missing me)
	      +/- pattern: /bar/baz		  (note missing you)
	      Target file: /dest/foo/bar
	      Target file: /dest/bar/baz

	      Example cmd: rsync -a --relative /home/me/ /home/you /dest
	      +/- pattern: /home/me/foo/bar	  (note full path)
	      +/- pattern: /home/you/bar/baz	  (ditto)
	      Target file: /dest/home/me/foo/bar
	      Target file: /dest/home/you/bar/baz

	      Example cmd: cd /home; rsync -a --relative me/foo you/ /dest
	      +/- pattern: /me/foo/bar	    (starts at specified path)
	      +/- pattern: /you/bar/baz	    (ditto)
	      Target file: /dest/me/foo/bar
	      Target file: /dest/you/bar/baz

			   31 Dec 2009			       57

rsync(1)						 rsync(1)

       The  easiest  way to see what name you should filter is to just look at
       the output when using --verbose and put a / in front of the  name  (use
       the --dry-run option if youre not yet ready to copy any files).

PER-DIRECTORY RULES AND DELETE
       Without	a  delete option, per-directory rules are only relevant on the
       sending side, so you can feel free to exclude  the  merge  files	 them-
       selves  without affecting the transfer.	To make this easy, the e modi-
       fier adds this exclude for you, as seen in these	 two  equivalent  com-
       mands:

	      rsync -av --filter=': .excl' --exclude=.excl host:src/dir /dest
	      rsync -av --filter=':e .excl' host:src/dir /dest

       However,	 if you want to do a delete on the receiving side AND you want
       some files to be excluded from being deleted, youll  need  to  be  sure
       that  the  receiving side knows what files to exclude.  The easiest way
       is to include the per-directory merge files in  the  transfer  and  use
       --delete-after,	because	 this ensures that the receiving side gets all
       the same exclude rules as the sending side before it  tries  to	delete
       anything:

	      rsync -avF --delete-after host:src/dir /dest

       However,	 if the merge files are not a part of the transfer, youll need
       to either specify some global exclude rules (i.e. specified on the com-
       mand  line),  or	 youll	need  to maintain your own per-directory merge
       files on the receiving side.  An example of the first is	 this  (assume
       that the remote .rules files exclude themselves):

       rsync -av --filter=: .rules --filter=. /my/extra.rules
	  --delete host:src/dir /dest

       In  the above example the extra.rules file can affect both sides of the
       transfer, but (on the sending side) the rules are  subservient  to  the
       rules  merged  from  the .rules files because they were specified after
       the per-directory merge rule.

       In one final example, the remote side is	 excluding  the	 .rsync-filter
       files from the transfer, but we want to use our own .rsync-filter files
       to control what gets deleted on the receiving side.  To do this we must
       specifically  exclude  the per-directory merge files (so that they dont
       get deleted) and then put rules into the local files  to	 control  what
       else should not get deleted.  Like one of these commands:

	   rsync -av --filter=':e /.rsync-filter' --delete \
	       host:src/dir /dest
	   rsync -avFF --delete host:src/dir /dest

			   31 Dec 2009			       58

rsync(1)						 rsync(1)

BATCH MODE
       Batch mode can be used to apply the same set of updates to many identi-
       cal systems. Suppose one has a tree which is replicated on a number  of
       hosts.  Now suppose some changes have been made to this source tree and
       those changes need to be propagated to the other hosts. In order to  do
       this  using  batch  mode,  rsync	 is run with the write-batch option to
       apply the changes made to the source tree to  one  of  the  destination
       trees.	The  write-batch  option causes the rsync client to store in a
       batch file all the information needed to repeat this operation  against
       other, identical destination trees.

       Generating the batch file once saves having to perform the file status,
       checksum, and data block generation more than once when updating multi-
       ple  destination	 trees.	 Multicast  transport protocols can be used to
       transfer the batch update files in parallel  to	many  hosts  at	 once,
       instead of sending the same data to every host individually.

       To  apply  the  recorded changes to another destination tree, run rsync
       with the read-batch option, specifying the name of the same batch file,
       and the destination tree.  Rsync updates the destination tree using the
       information stored in the batch file.

       For your convenience, a script file is also  created  when  the	write-
       batch option is used:  it will be named the same as the batch file with
       .sh appended.  This script file contains a  command-line	 suitable  for
       updating	 a destination tree using the associated batch file. It can be
       executed using a Bourne (or Bourne-like) shell, optionally  passing  in
       an  alternate  destination  tree pathname which is then used instead of
       the original destination path.  This is	useful	when  the  destination
       tree  path  on the current host differs from the one used to create the
       batch file.

       Examples:

	      $ rsync --write-batch=foo -a host:/source/dir/ /adest/dir/
	      $ scp foo* remote:
	      $ ssh remote ./foo.sh /bdest/dir/

	      $ rsync --write-batch=foo -a /source/dir/ /adest/dir/
	      $ ssh remote rsync --read-batch=- -a /bdest/dir/ <foo

       In  these  examples,  rsync  is	used  to   update   /adest/dir/	  from
       /source/dir/  and the information to repeat this operation is stored in
       foo and foo.sh.	The host remote is then updated with the batched  data
       going  into  the directory /bdest/dir.  The differences between the two
       examples reveals some of the flexibility you have in how you deal  with
       batches:

       o      The  first example shows that the initial copy doesnt have to be
	      local -- you can push or pull data to/from a remote  host	 using
	      either  the  remote-shell	 syntax	 or  rsync  daemon  syntax, as

			   31 Dec 2009			       59

rsync(1)						 rsync(1)

	      desired.

       o      The first example uses the created foo.sh file to get the	 right
	      rsync  options when running the read-batch command on the remote
	      host.

       o      The second example reads the batch data via  standard  input  so
	      that  the	 batch	file  doesnt  need  to be copied to the remote
	      machine first.  This example avoids the foo.sh script because it
	      needed to use a modified --read-batch option, but you could edit
	      the script file if you wished to make use of it  (just  be  sure
	      that  no	other  option is trying to use standard input, such as
	      the --exclude-from=- option).

       Caveats:

       The read-batch option expects the destination tree that it is  updating
       to  be  identical  to  the destination tree that was used to create the
       batch update fileset.  When a difference between the destination	 trees
       is  encountered	the  update  might be discarded with a warning (if the
       file appears to be  up-to-date  already)	 or  the  file-update  may  be
       attempted  and  then, if the file fails to verify, the update discarded
       with an error.  This means that it should be safe  to  re-run  a	 read-
       batch  operation	 if the command got interrupted.  If you wish to force
       the batched-update to always be attempted regardless of the files  size
       and  date,  use	the  -I	 option (when reading the batch).  If an error
       occurs, the destination tree will probably be in	 a  partially  updated
       state.  In that case, rsync can be used in its regular (non-batch) mode
       of operation to fix up the destination tree.

       The rsync version used on all destinations must be at least as  new  as
       the  one used to generate the batch file.  Rsync will die with an error
       if the protocol version in the batch file is too	 new  for  the	batch-
       reading	rsync  to handle.  See also the --protocol option for a way to
       have the creating rsync generate a batch file that an older  rsync  can
       understand.  (Note that batch files changed format in version 2.6.3, so
       mixing versions older than that with newer versions will not work.)

       When reading a batch file,  rsync  will	force  the  value  of  certain
       options	to  match  the data in the batch file if you didnt set them to
       the same as the batch-writing command.  Other options can (and  should)
       be  changed.   For  instance  --write-batch  changes  to	 --read-batch,
       --files-from is dropped, and the	 --filter/--include/--exclude  options
       are not needed unless one of the --delete options is specified.

       The   code   that   creates  the	 BATCH.sh  file	 transforms  any  fil-
       ter/include/exclude options into a single list that is  appended	 as  a
       here  document to the shell script file.	 An advanced user can use this
       to modify the exclude list if a change in what gets deleted by --delete
       is  desired.   A	 normal	 user  can ignore this detail and just use the
       shell script as an easy way to run the appropriate --read-batch command
       for the batched data.

			   31 Dec 2009			       60

rsync(1)						 rsync(1)

       The  original  batch  mode in rsync was based on rsync+, but the latest
       version uses a new implementation.

SYMBOLIC LINKS
       Three basic behaviors are possible when	rsync  encounters  a  symbolic
       link in the source directory.

       By default, symbolic links are not transferred at all.  A message skip-
       ping non-regular file is emitted for any symlinks that exist.

       If --links is specified, then symlinks are recreated with the same tar-
       get on the destination.	Note that --archive implies --links.

       If  --copy-links	 is  specified, then symlinks are collapsed by copying
       their referent, rather than the symlink.

       Rsync can also distinguish safe and unsafe symbolic links.  An  example
       where  this  might  be  used is a web site mirror that wishes to ensure
       that the rsync module that is copied does not include symbolic links to
       /etc/passwd    in    the	  public   section   of	  the	site.	 Using
       --copy-unsafe-links will cause any links to be copied as the file  they
       point  to  on  the  destination.	  Using --safe-links will cause unsafe
       links to be omitted altogether.	(Note that you	must  specify  --links
       for --safe-links to have any effect.)

       Symbolic	 links	are  considered	 unsafe	 if they are absolute symlinks
       (start with /), empty, or if  they  contain  enough  ..	components  to
       ascend from the directory being copied.

       Heres  a	 summary of how the symlink options are interpreted.  The list
       is in order of precedence, so if your combination of options isnt  men-
       tioned, use the first line that is a complete subset of your options:

       --copy-links
	      Turn all symlinks into normal files (leaving no symlinks for any
	      other options to affect).

       --links --copy-unsafe-links
	      Turn all unsafe symlinks into files and duplicate all safe  sym-
	      links.

       --copy-unsafe-links
	      Turn  all unsafe symlinks into files, noisily skip all safe sym-
	      links.

       --links --safe-links
	      Duplicate safe symlinks and skip unsafe ones.

			   31 Dec 2009			       61

rsync(1)						 rsync(1)

       --links
	      Duplicate all symlinks.

DIAGNOSTICS
       rsync occasionally produces error messages that may seem a little cryp-
       tic. The one that seems to cause the most confusion is protocol version
       mismatch -- is your shell clean?.

       This message is usually caused by your startup scripts or remote	 shell
       facility	 producing  unwanted garbage on the stream that rsync is using
       for its transport. The way to diagnose this  problem  is	 to  run  your
       remote shell like this:

	      ssh remotehost /bin/true > out.dat

       then  look  at out.dat. If everything is working correctly then out.dat
       should be a zero length file. If you are getting the above  error  from
       rsync  then  you	 will probably find that out.dat contains some text or
       data. Look at the contents and try to work out what  is	producing  it.
       The  most  common cause is incorrectly configured shell startup scripts
       (such as .cshrc or .profile) that contain output	 statements  for  non-
       interactive logins.

       If  you are having trouble debugging filter patterns, then try specify-
       ing the -vv option.  At this level of verbosity	rsync  will  show  why
       each individual file is included or excluded.

EXIT VALUES
       0      Success

       1      Syntax or usage error

       2      Protocol incompatibility

       3      Errors selecting input/output files, dirs

       4      Requested	 action	 not supported: an attempt was made to manipu-
	      late 64-bit files on a platform that cannot support them; or  an
	      option  was specified that is supported by the client and not by
	      the server.

       5      Error starting client-server protocol

       6      Daemon unable to append to log-file

       10     Error in socket I/O

       11     Error in file I/O

       12     Error in rsync protocol data stream

			   31 Dec 2009			       62

rsync(1)						 rsync(1)

       13     Errors with program diagnostics

       14     Error in IPC code

       20     Received SIGUSR1 or SIGINT

       21     Some error returned by waitpid()

       22     Error allocating core memory buffers

       23     Partial transfer due to error

       24     Partial transfer due to vanished source files

       25     The --max-delete limit stopped deletions

       30     Timeout in data send/receive

       35     Timeout waiting for daemon connection

ENVIRONMENT VARIABLES
       CVSIGNORE
	      The CVSIGNORE environment variable supplements any  ignore  pat-
	      terns in .cvsignore files. See the --cvs-exclude option for more
	      details.

       RSYNC_ICONV
	      Specify a default --iconv setting using this  environment	 vari-
	      able.

       RSYNC_RSH
	      The  RSYNC_RSH  environment  variable allows you to override the
	      default shell used as the transport  for	rsync.	 Command  line
	      options  are permitted after the command name, just as in the -e
	      option.

       RSYNC_PROXY
	      The RSYNC_PROXY environment variable allows you to redirect your
	      rsync  client to use a web proxy when connecting to a rsync dae-
	      mon. You should set RSYNC_PROXY to a hostname:port pair.

       RSYNC_PASSWORD
	      Setting RSYNC_PASSWORD to the required password  allows  you  to
	      run  authenticated  rsync connections to an rsync daemon without
	      user intervention. Note that this does not supply a password  to
	      a	 remote	 shell transport such as ssh; to learn how to do that,
	      consult the remote shells documentation.

       USER or LOGNAME
	      The USER or LOGNAME environment variables are used to  determine
	      the  default  username  sent  to an rsync daemon.	 If neither is
	      set, the username defaults to nobody.

			   31 Dec 2009			       63

rsync(1)						 rsync(1)

       HOME   The HOME environment variable is used to find the users  default
	      .cvsignore file.

FILES
       /etc/rsyncd.conf or rsyncd.conf

SEE ALSO
       rsyncd.conf(5)

BUGS
       times are transferred as *nix time_t values

       When  transferring  to  FAT  filesystems	 rsync	may re-sync unmodified
       files.  See the comments on the --modify-window option.

       file permissions, devices, etc. are  transferred	 as  native  numerical
       values

       see also the comments on the --delete option

       Please report bugs! See the web site at http://rsync.samba.org/

VERSION
       This man page is current for version 3.0.7 of rsync.

INTERNAL OPTIONS
       The  options  --server  and  --sender are used internally by rsync, and
       should never be typed by	 a  user  under	 normal	 circumstances.	  Some
       awareness  of these options may be needed in certain scenarios, such as
       when setting up a login that  can  only	run  an	 rsync	command.   For
       instance,  the support directory of the rsync distribution has an exam-
       ple script named rrsync (for restricted rsync) that can be used with  a
       restricted ssh login.

CREDITS
       rsync  is distributed under the GNU public license.  See the file COPY-
       ING for details.

       A WEB site is available at http://rsync.samba.org/.  The site  includes
       an  FAQ-O-Matic	which  may  cover  questions unanswered by this manual
       page.

       The primary ftp site for rsync is ftp://rsync.samba.org/pub/rsync.

       We would be delighted to hear  from  you	 if  you  like	this  program.
       Please contact the mailing-list at rsync@lists.samba.org.

			   31 Dec 2009			       64

rsync(1)						 rsync(1)

       This  program  uses  the	 excellent zlib compression library written by
       Jean-loup Gailly and Mark Adler.

THANKS
       Special thanks go out to: John Van Essen,  Matt	McCutchen,  Wesley  W.
       Terpstra,  David	 Dykstra,  Jos Backus, Sebastian Krahmer, Martin Pool,
       and our gone-but-not-forgotten compadre, J.W. Schultz.

       Thanks also to Richard Brent, Brendan Mackay, Bill Waite, Stephen Roth-
       well  and David Bell.  Ive probably missed some people, my apologies if
       I have.

AUTHOR
       rsync was originally written by Andrew  Tridgell	 and  Paul  Mackerras.
       Many  people  have later contributed to it.  It is currently maintained
       by Wayne Davison.

       Mailing	lists  for  support   and   development	  are	available   at
       http://lists.samba.org

			   31 Dec 2009			       65

[top]

List of man pages available for OpenBSD

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net