sspgvx man page on YellowDog

Man page or keyword search:  
man Server   18644 pages
apropos Keyword Search (all sections)
Output format
YellowDog logo
[printable version]

SSPGVX(l)			       )			     SSPGVX(l)

NAME
       SSPGVX  - compute selected eigenvalues, and optionally, eigenvectors of
       a  real	generalized  symmetric-definite	 eigenproblem,	of  the	  form
       A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x

SYNOPSIS
       SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU,
			  ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )

	   CHARACTER	  JOBZ, RANGE, UPLO

	   INTEGER	  IL, INFO, ITYPE, IU, LDZ, M, N

	   REAL		  ABSTOL, VL, VU

	   INTEGER	  IFAIL( * ), IWORK( * )

	   REAL		  AP( * ), BP( * ), W( * ), WORK( * ), Z( LDZ, * )

PURPOSE
       SSPGVX computes selected eigenvalues, and optionally, eigenvectors of a
       real   generalized   symmetric-definite	 eigenproblem,	 of  the  form
       A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here  A	and  B
       are  assumed  to	 be symmetric, stored in packed storage, and B is also
       positive definite.  Eigenvalues and eigenvectors	 can  be  selected  by
       specifying  either  a  range  of	 values	 or a range of indices for the
       desired eigenvalues.

ARGUMENTS
       ITYPE   (input) INTEGER
	       Specifies the problem type to be solved:
	       = 1:  A*x = (lambda)*B*x
	       = 2:  A*B*x = (lambda)*x
	       = 3:  B*A*x = (lambda)*x

       JOBZ    (input) CHARACTER*1
	       = 'N':  Compute eigenvalues only;
	       = 'V':  Compute eigenvalues and eigenvectors.

       RANGE   (input) CHARACTER*1
	       = 'A': all eigenvalues will be found.
	       = 'V': all eigenvalues in the half-open interval	 (VL,VU]  will
	       be  found.   = 'I': the IL-th through IU-th eigenvalues will be
	       found.

       UPLO    (input) CHARACTER*1
	       = 'U':  Upper triangle of A and B are stored;
	       = 'L':  Lower triangle of A and B are stored.

       N       (input) INTEGER
	       The order of the matrix pencil (A,B).  N >= 0.

       AP      (input/output) REAL array, dimension (N*(N+1)/2)
	       On entry, the upper or lower triangle of the  symmetric	matrix
	       A,  packed  columnwise in a linear array.  The j-th column of A
	       is stored in the array AP as follows: if UPLO  =	 'U',  AP(i  +
	       (j-1)*j/2)  =  A(i,j)  for  1<=i<=j;  if	 UPLO  =  'L',	AP(i +
	       (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

	       On exit, the contents of AP are destroyed.

       BP      (input/output) REAL array, dimension (N*(N+1)/2)
	       On entry, the upper or lower triangle of the  symmetric	matrix
	       B,  packed  columnwise in a linear array.  The j-th column of B
	       is stored in the array BP as follows: if UPLO  =	 'U',  BP(i  +
	       (j-1)*j/2)  =  B(i,j)  for  1<=i<=j;  if	 UPLO  =  'L',	BP(i +
	       (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

	       On exit, the triangular factor U or L from the Cholesky factor‐
	       ization B = U**T*U or B = L*L**T, in the same storage format as
	       B.

       VL      (input) REAL
	       VU      (input) REAL If RANGE='V', the lower and	 upper	bounds
	       of  the	interval to be searched for eigenvalues. VL < VU.  Not
	       referenced if RANGE = 'A' or 'I'.

       IL      (input) INTEGER
	       IU      (input) INTEGER If RANGE='I', the indices (in ascending
	       order)  of the smallest and largest eigenvalues to be returned.
	       1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   Not
	       referenced if RANGE = 'A' or 'V'.

       ABSTOL  (input) REAL
	       The  absolute error tolerance for the eigenvalues.  An approxi‐
	       mate eigenvalue is accepted as converged when it is  determined
	       to lie in an interval [a,b] of width less than or equal to

	       ABSTOL + EPS *	max( |a|,|b| ) ,

	       where  EPS is the machine precision.  If ABSTOL is less than or
	       equal to zero, then  EPS*|T|  will be used in its place,	 where
	       |T|  is the 1-norm of the tridiagonal matrix obtained by reduc‐
	       ing A to tridiagonal form.

	       Eigenvalues will be computed most accurately when ABSTOL is set
	       to  twice  the underflow threshold 2*SLAMCH('S'), not zero.  If
	       this routine returns with INFO>0, indicating that  some	eigen‐
	       vectors did not converge, try setting ABSTOL to 2*SLAMCH('S').

       M       (output) INTEGER
	       The  total number of eigenvalues found.	0 <= M <= N.  If RANGE
	       = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

       W       (output) REAL array, dimension (N)
	       On normal exit, the first M elements contain the	 selected  ei‐
	       genvalues in ascending order.

       Z       (output) REAL array, dimension (LDZ, max(1,M))
	       If  JOBZ	 = 'N', then Z is not referenced.  If JOBZ = 'V', then
	       if INFO = 0, the first M columns of Z contain  the  orthonormal
	       eigenvectors  of the matrix A corresponding to the selected ei‐
	       genvalues, with the i-th column of Z  holding  the  eigenvector
	       associated  with W(i).  The eigenvectors are normalized as fol‐
	       lows: if ITYPE  =  1  or	 2,  Z**T*B*Z  =  I;  if  ITYPE	 =  3,
	       Z**T*inv(B)*Z = I.

	       If an eigenvector fails to converge, then that column of Z con‐
	       tains the latest approximation  to  the	eigenvector,  and  the
	       index  of the eigenvector is returned in IFAIL.	Note: the user
	       must ensure that at least max(1,M) columns are supplied in  the
	       array  Z;  if RANGE = 'V', the exact value of M is not known in
	       advance and an upper bound must be used.

       LDZ     (input) INTEGER
	       The leading dimension of the array Z.  LDZ >= 1, and if JOBZ  =
	       'V', LDZ >= max(1,N).

       WORK    (workspace) REAL array, dimension (8*N)

       IWORK   (workspace) INTEGER array, dimension (5*N)

       IFAIL   (output) INTEGER array, dimension (N)
	       If  JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL
	       are zero.  If INFO > 0, then IFAIL contains the indices of  the
	       eigenvectors  that  failed  to  converge.   If JOBZ = 'N', then
	       IFAIL is not referenced.

       INFO    (output) INTEGER
	       = 0:  successful exit
	       < 0:  if INFO = -i, the i-th argument had an illegal value
	       > 0:  SPPTRF or SSPEVX returned an error code:
	       <= N:  if INFO = i, SSPEVX failed to converge;  i  eigenvectors
	       failed  to  converge.  Their indices are stored in array IFAIL.
	       > N:   if INFO = N + i, for 1 <= i <= N, then the leading minor
	       of order i of B is not positive definite.  The factorization of
	       B could not be completed and  no	 eigenvalues  or  eigenvectors
	       were computed.

FURTHER DETAILS
       Based on contributions by
	  Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

LAPACK version 3.0		 15 June 2000			     SSPGVX(l)
[top]

List of man pages available for YellowDog

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net