dlalsa.f man page on DragonFly

Man page or keyword search:  
man Server   44335 pages
apropos Keyword Search (all sections)
Output format
DragonFly logo
[printable version]

dlalsa.f(3)			    LAPACK			   dlalsa.f(3)

NAME
       dlalsa.f -

SYNOPSIS
   Functions/Subroutines
       subroutine dlalsa (ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, LDU,
	   VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM,
	   C, S, WORK, IWORK, INFO)
	   DLALSA computes the SVD of the coefficient matrix in compact form.
	   Used by sgelsd.

Function/Subroutine Documentation
   subroutine dlalsa (integerICOMPQ, integerSMLSIZ, integerN, integerNRHS,
       double precision, dimension( ldb, * )B, integerLDB, double precision,
       dimension( ldbx, * )BX, integerLDBX, double precision, dimension( ldu,
       * )U, integerLDU, double precision, dimension( ldu, * )VT, integer,
       dimension( * )K, double precision, dimension( ldu, * )DIFL, double
       precision, dimension( ldu, * )DIFR, double precision, dimension( ldu, *
       )Z, double precision, dimension( ldu, * )POLES, integer, dimension( *
       )GIVPTR, integer, dimension( ldgcol, * )GIVCOL, integerLDGCOL, integer,
       dimension( ldgcol, * )PERM, double precision, dimension( ldu, *
       )GIVNUM, double precision, dimension( * )C, double precision,
       dimension( * )S, double precision, dimension( * )WORK, integer,
       dimension( * )IWORK, integerINFO)
       DLALSA computes the SVD of the coefficient matrix in compact form. Used
       by sgelsd.

       Purpose:

	    DLALSA is an itermediate step in solving the least squares problem
	    by computing the SVD of the coefficient matrix in compact form (The
	    singular vectors are computed as products of simple orthorgonal
	    matrices.).

	    If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
	    matrix of an upper bidiagonal matrix to the right hand side; and if
	    ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
	    right hand side. The singular vector matrices were generated in
	    compact form by DLALSA.

       Parameters:
	   ICOMPQ

		     ICOMPQ is INTEGER
		    Specifies whether the left or the right singular vector
		    matrix is involved.
		    = 0: Left singular vector matrix
		    = 1: Right singular vector matrix

	   SMLSIZ

		     SMLSIZ is INTEGER
		    The maximum size of the subproblems at the bottom of the
		    computation tree.

	   N

		     N is INTEGER
		    The row and column dimensions of the upper bidiagonal matrix.

	   NRHS

		     NRHS is INTEGER
		    The number of columns of B and BX. NRHS must be at least 1.

	   B

		     B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
		    On input, B contains the right hand sides of the least
		    squares problem in rows 1 through M.
		    On output, B contains the solution X in rows 1 through N.

	   LDB

		     LDB is INTEGER
		    The leading dimension of B in the calling subprogram.
		    LDB must be at least max(1,MAX( M, N ) ).

	   BX

		     BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
		    On exit, the result of applying the left or right singular
		    vector matrix to B.

	   LDBX

		     LDBX is INTEGER
		    The leading dimension of BX.

	   U

		     U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
		    On entry, U contains the left singular vector matrices of all
		    subproblems at the bottom level.

	   LDU

		     LDU is INTEGER, LDU = > N.
		    The leading dimension of arrays U, VT, DIFL, DIFR,
		    POLES, GIVNUM, and Z.

	   VT

		     VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
		    On entry, VT**T contains the right singular vector matrices of
		    all subproblems at the bottom level.

	   K

		     K is INTEGER array, dimension ( N ).

	   DIFL

		     DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
		    where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.

	   DIFR

		     DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
		    On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
		    distances between singular values on the I-th level and
		    singular values on the (I -1)-th level, and DIFR(*, 2 * I)
		    record the normalizing factors of the right singular vectors
		    matrices of subproblems on I-th level.

	   Z

		     Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
		    On entry, Z(1, I) contains the components of the deflation-
		    adjusted updating row vector for subproblems on the I-th
		    level.

	   POLES

		     POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
		    On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
		    singular values involved in the secular equations on the I-th
		    level.

	   GIVPTR

		     GIVPTR is INTEGER array, dimension ( N ).
		    On entry, GIVPTR( I ) records the number of Givens
		    rotations performed on the I-th problem on the computation
		    tree.

	   GIVCOL

		     GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
		    On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
		    locations of Givens rotations performed on the I-th level on
		    the computation tree.

	   LDGCOL

		     LDGCOL is INTEGER, LDGCOL = > N.
		    The leading dimension of arrays GIVCOL and PERM.

	   PERM

		     PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
		    On entry, PERM(*, I) records permutations done on the I-th
		    level of the computation tree.

	   GIVNUM

		     GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
		    On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
		    values of Givens rotations performed on the I-th level on the
		    computation tree.

	   C

		     C is DOUBLE PRECISION array, dimension ( N ).
		    On entry, if the I-th subproblem is not square,
		    C( I ) contains the C-value of a Givens rotation related to
		    the right null space of the I-th subproblem.

	   S

		     S is DOUBLE PRECISION array, dimension ( N ).
		    On entry, if the I-th subproblem is not square,
		    S( I ) contains the S-value of a Givens rotation related to
		    the right null space of the I-th subproblem.

	   WORK

		     WORK is DOUBLE PRECISION array.
		    The dimension must be at least N.

	   IWORK

		     IWORK is INTEGER array.
		    The dimension must be at least 3 * N

	   INFO

		     INFO is INTEGER
		     = 0:  successful exit.
		     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author:
	   Univ. of Tennessee

	   Univ. of California Berkeley

	   Univ. of Colorado Denver

	   NAG Ltd.

       Date:
	   September 2012

       Contributors:
	   Ming Gu and Ren-Cang Li, Computer Science Division, University of
	   California at Berkeley, USA
	    Osni Marques, LBNL/NERSC, USA

       Definition at line 267 of file dlalsa.f.

Author
       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2			Sat Nov 16 2013			   dlalsa.f(3)
[top]

List of man pages available for DragonFly

Copyright (c) for man pages and the logo by the respective OS vendor.

For those who want to learn more, the polarhome community provides shell access and support.

[legal] [privacy] [GNU] [policy] [cookies] [netiquette] [sponsors] [FAQ]
Tweet
Polarhome, production since 1999.
Member of Polarhome portal.
Based on Fawad Halim's script.
....................................................................
Vote for polarhome
Free Shell Accounts :: the biggest list on the net